Skip to main content

Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases

Local tumour control and survival

Ganzhirnbestrahlung mit Hippocampusschonung und Dosiseskalation bei multiplen Hirnmetastasen

Lokale Tumorkontrolle und Überleben



Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) for multiple brain metastases may prevent treatment-related cognitive decline, compared to standard WBRT. Additionally, simultaneous integrated boost (SIB) on individual metastases may further improve the outcome. Here, we present initial data concerning local tumour control (LTC), intracranial progression-free survival (PFS), overall survival (OS), toxicity and safety for this new irradiation technique.

Methods and materials

Twenty patients, enrolled between 2011 and 2013, were treated with HA-WBRT (30 Gy in 12 fractions, D98 % to hippocampus ≤ 9 Gy) and a SIB (51 Gy) on multiple (2–13) metastases using a volumetric modulated arc therapy (VMAT) approach based on 2–4 arcs. Metastases were evaluated bidimensionally along the two largest diameters in contrast-enhanced three-dimensional T1-weighed MRI.


Median follow-up was 40 weeks. The median time to progression of boosted metastases has not been reached yet, corresponding to a LTC rate of 73 %. Median intracranial PFS was 40 weeks, corresponding to a 1-year PFS of 45.3 %. Median OS was 71.5 weeks, corresponding to a 1-year OS of 60 %. No obvious acute or late toxicities grade > 2 (NCI CTCAE v4.03) were observed. Dmean to the bilateral hippocampi was 6.585 Gy ± 0.847 (α/β = 2 Gy). Two patients developed a new metastasis in the area of hippocampal avoidance.


HA-WBRT (simultaneous integrated protection, SIP) with SIB to metastases is a safe and tolerable regime that shows favorable LTC for patients with multiple brain metastases, while it has the potential to minimize the side-effect of cognitive deterioration.



Die Hippocampus-schonende Ganzhirnbestrahlung (HS-GHB) kann im Vergleich zur Standard-GHB die Verschlechterung der neurokognitiven Funktion verhindern. Zusätzlich vermag ein simultan integrierter Boost (SIB) auf die Metastasen die Prognose der betroffenen Patienten weiter zu verbessern. In dieser Studie präsentieren wir erste Ergebnisse hinsichtlich lokaler Tumorkontrolle, des intrakraniellen progressionsfreien Überlebens (PFS), des Gesamtüberlebens (OS), der Toxizität und der Sicherheit dieser neuen Bestrahlungstechnik.

Methoden und Material

Es wurden 20 Patienten zwischen 2011 und 2013 mit einer HS-GHB (30 Gy in 12 Fraktionen, D98 % am Hippocampus ≤ 9 Gy) und simultan integriertem Boost (51 Gy) auf multiple (2 bis 13) Metastasen behandelt. Eingesetzt wurde eine individuell geplante VMAT („volumetric modulated arc therapy“)-Technik mit 2 bis 4 Bögen. Die Größe der Metastasen wurde bidimensional entlang der 2 größten Durchmesser in kontrastmittelverstärkten, T1-gewichteten dreidimensionalen MRT-Aufnahmen evaluiert.


Die mediane Nachbeobachtungszeit betrug 40 Wochen. Die mediane Zeit zur Progression der geboosteten Metastasen wurde nicht erreicht, was mit einer lokalen Tumorkontrolle von 73 % einhergeht. Das mediane PFS betrug 40 Wochen (1-Jahres-PFS 45,3 %). Das mediane OS betrug 71,5 Wochen (1-Jahres-OS 60 %). Es traten keine Toxizitäten > Grad 2 (NCI CTCAE v4.03) auf. Die Dmean auf die Hippocampi betrug 6,585 Gy ± 0,847 (α/β = 2 Gy). Zwei Patienten entwickelten je eine neue Metastase im Bereich der Hippocampusschonung.


HS-GHB (simultane integrierte Protektion, SIP) mit SIB auf die Metastasen ist ein sicheres und tolerables Therapiekonzept mit einer vorteilhaften lokalen Tumorkontrolle bei Patienten mit multiplen Hirnmetastasen bei gleichzeitiger Möglichkeit, die behandlungsbedingten neurokognitiven Einschränkungen von Lernen und Gedächtnis zu verhindern.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1

    Cairncross JG, Kim JH, Posner JB (1980) Radiation therapy for brain metastases. Ann Neurol 7:529–541

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Weissman DE (1988) Glucocorticoid treatment for brain metastases and epidural spinal cord compression: a review. J Clin Oncol 6:543–551

    CAS  PubMed  Google Scholar 

  3. 3

    Diener-West M, Dobbins TW, Phillips TL, Nelson DF (1989) Identification of an optimal subgroup for treatment evaluation of patients with brain metastases using RTOG study 7916. Int J Radiat Oncol Biol Phys 16:669–673

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Kondziolka D, Patel A, Lunsford LD et al (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol 29:134–141

    Article  PubMed Central  PubMed  Google Scholar 

  6. 6

    Li J, Bentzen SM, Li J, Renschler M, Mehta MP (2008) Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys 71:64–70

    Article  PubMed  Google Scholar 

  7. 7

    Soffietti R, Kocher M, Abacioglu UM et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 31:65–72

    Article  PubMed  Google Scholar 

  8. 8

    Roman DD, Sperduto PW (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys 31:983–998

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Welzel G, Fleckenstein K, Schaefer J et al (2008) Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int J Radiat Oncol Biol Phys 72:1311–1318

    Article  PubMed  Google Scholar 

  10. 10

    Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044

    Article  PubMed  Google Scholar 

  11. 11

    Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168

    Article  PubMed  Google Scholar 

  12. 12

    Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Dickerson BC, Eichenbaum H (2010) The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 35:86–104

    Article  PubMed Central  PubMed  Google Scholar 

  14. 14

    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15

    Shors TJ, Miesegaes G, Beylin A et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. 17

    Small SA, Schobel SA, Buxton RB et al (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. 18

    Gondi V, Tome WA, Marsh J et al (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95:327–331

    Article  PubMed Central  PubMed  Google Scholar 

  19. 19

    Oskan F, Ganswindt U, Schwarz SB et al (2014) Hippocampus sparing in whole-brain radiotherapy. A review. Strahlenther Onkol 190:337–341

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Assouline A, Levy A, Chargari C et al (2011) Whole brain radiotherapy: prognostic factors and results of a radiation boost delivered through a conventional linear accelerator. Radiother Oncol 99:214–217

    Article  PubMed  Google Scholar 

  21. 21

    Casanova N, Mazouni Z, Bieri S et al (2010) Whole brain radiotherapy with a conformational external beam radiation boost for lung cancer patients with 1–3 brain metastasis: a multi institutional study. Radiat Oncol 5:13

    Article  PubMed Central  PubMed  Google Scholar 

  22. 22

    Prokic V, Wiedenmann N, Fels F et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85:264-270

  23. 23

    Broemme J, Abu-Isa J, Kottke R et al (2013) Adjuvant therapy after resection of brain metastases. Frameless image-guided LINAC-based radiosurgery and stereotactic hypofractionated radiotherapy. Strahlenther Onkol 189:765–770

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Lin NU, Lee EQ, Aoyama H et al (2013) Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol 14:e396–e406

    Article  PubMed  Google Scholar 

  26. 26

    Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Dietrich J, Monje M, Wefel J, Meyers C (2008) Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13:1285–1295

    Article  PubMed  Google Scholar 

  28. 28

    Gondi V, Pugh SL, Tome WA et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32:3810–3816

    Article  PubMed  Google Scholar 

  29. 29

    Harth S, Abo-Madyan Y, Zheng L et al (2013) Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiother Oncol 109:152–158

    Article  PubMed  Google Scholar 

  30. 30

    Gondi V, Hermann BP, Mehta MP, Tomé WA (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354

    Article  PubMed  Google Scholar 

  31. 31

    Rades D, Pluemer A, Veninga T et al (2007) A boost in addition to whole-brain radiotherapy improves patient outcome after resection of 1 or 2 brain metastases in recursive partitioning analysis class 1 and 2 patients. Cancer 110:1551–1559

    Article  PubMed  Google Scholar 

  32. 32

    Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672

    Article  PubMed  Google Scholar 

  33. 33

    Yamamoto M, Serizawa T, Shuto T et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395

    Article  PubMed  Google Scholar 

  34. 34

    Wiggenraad R, Verbeek-de Kanter A, Mast M et al (2012) Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study. Strahlenther Onkol 188:696–701

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–S27

    Article  PubMed Central  PubMed  Google Scholar 

  36. 36

    Awad R, Fogarty G, Hong A et al (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases—the first Australian experience. Radiat Oncol 8:62

    Article  PubMed Central  PubMed  Google Scholar 

  37. 37

    Rades D, Gerdan L, Segedin B et al (2013) Brain metastasis. Prognostic value of the number of involved extracranial organs. Strahlenther Onkol 189:996–1000

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Gaspar L, Scott C, Rotman M et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751

    Article  CAS  PubMed  Google Scholar 

Download references


The present study was supported by the German Cancer Consortium (DKTK).

Author information



Corresponding author

Correspondence to Anca-Ligia Grosu MD.

Ethics declarations

Conflict of interest

O. Oehlke, D. Wucherpfennig, F. Fels, L. Frings, K. Egger, A. Weyerbrock, V. Prokic, C. Nieder and A.-L. Grosu state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oehlke, O., Wucherpfennig, D., Fels, F. et al. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases. Strahlenther Onkol 191, 461–469 (2015).

Download citation


  • Neoplasm metastases
  • Whole brain irradiation
  • Hippocampal sparing
  • Simultaneous integrated protection
  • Neurocognition


  • Hirnmetastasen
  • Ganzhirnbestrahlung
  • Hippocampusschonung
  • Simultane integrierte protektion
  • Neurokognition