Skip to main content

Advertisement

Log in

Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases

A single centre study

Lokale Progression und Pseudoprogression bei großen Hirnmetastasen nach stereotaktischer Radiotherapie mit einer oder mehreren Fraktionen

Eine monoinstitutionelle Studie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases.

Materials and methods

In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm3 or metastases in the brainstem.

Results

The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy  with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different.

Conclusion

The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary.

Zusammenfassung

Hintergrund

Die einjährige lokale Tumorkontrollrate von Hirnmetastasen mit einem Durchmesser von mind. 3 cm beträgt nach stereotaktischer Bestrahlung mit einer Fraktion (SRT) weniger als 70%. Höhere lokale Tumorkontrollraten sind nach fraktionierter stereotaktischer Bestrahlung (FSRT) beschrieben worden. In dieser Studie werden die Behandlungsergebnisse der SRT und der FSRT für größere Hirnmetastasen verglichen.

Material und Methoden

In 2 aufeinanderfolgenden Perioden wurden 41 Patienten mit 46 Hirnmetastasen mit 1 -mal  15 Gy SRT und 51 Patienten mit 65 Hirnmetastasen mit 3 -mal  8 Gy FSRT behandelt. Alle inkludierten Patienten hatten einen PTV von mindestens 13 cm3 oder Metastasen im Hirnstammbereich.

Ergebnisse

Das minimale Follow-up von überlebenden Patienten betrug 22 Monate. Beim Vergleich der Resultate von 1 -mal 15 Gy mit 3 -mal  8 Gy ergaben sich nach einem Jahr keine signifikanten Unterschiede bei den Raten ohne lokale Progression (54% bzw. 61%; p = 0,93), der Pseudoprogression (85% bzw. 75%; p = 0,25) und im Gesamtϋberleben.

Schlussfolgerung

Die lokale Progression und Pseudoprogression von großen Hirnmetastasen oder Hirnstammmetastasen sind ein Jahr nach Behandlung mit 1 -mal 15 Gy oder 3 -mal 8 Gy vergleichbar. Fϋr eine bessere lokale Kontrolle sind vielleicht FSRT-Regime mit höherer biologischer Äquivalentdosis notwendig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Linskey ME, Andrews DW, Asher AL et al (2010) The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:45–68

    Article  PubMed  Google Scholar 

  2. Regine WF, Huhn JL, Patchell RA et al (2002) Risk of symptomatic brain tumor recurrence and neurologic deficit after radiosurgery alone in patients with newly diagnosed brain metastases: results and implications. Int J Radiat Oncol Biol Phys 52:333–338

    Article  PubMed  Google Scholar 

  3. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298

    Article  PubMed  CAS  Google Scholar 

  4. Hoefnagels FW, Lagerwaard FJ, Sanchez E et al (2009) Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol 256:878–887

    Article  PubMed  Google Scholar 

  5. Chao ST, Barnett GH, Vogelbaum MA et al (2008) Salvage stereotactic radiosurgery effectively treats recurrences from whole-brain radiation therapy. Cancer 113:2198–2204

    Article  PubMed  Google Scholar 

  6. Molenaar R, Wiggenraad R, Verbeek-de KA et al (2009) Relationship between volume, dose and local control in stereotactic radiosurgery of brain metastasis. Br J Neurosurg 23:170–178

    Article  PubMed  Google Scholar 

  7. Fahrig A, Ganslandt O, Lambrecht U et al (2007) Hypofractionated stereotactic radiotherapy for brain metastases–results from three different dose concepts. Strahlenther Onkol 183:625–630

    Article  PubMed  Google Scholar 

  8. Higuchi Y, Serizawa T, Nagano O et al (2009) Three-Staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int J Radiat Oncol Biol Phys 74(5):1543–1548

    Article  PubMed  Google Scholar 

  9. Theelen A, Martens J, Bosmans G et al (2012) Relocatable fixation systems in intracranial stereotactic radiotherapy. Accuracy of serial CT scans and patient acceptance in a randomized design. Strahlenther Onkol 188:84–90

    Article  PubMed  CAS  Google Scholar 

  10. Santvoort J van, Wiggenraad R, Bos P (2008) Positioning accuracy in stereotactic radiotherapy using a mask system with added vacuum mouth piece and stereoscopic X-ray positioning. Int J Radiat Oncol Biol Phys 72:261–267

    Article  PubMed  Google Scholar 

  11. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    PubMed  CAS  Google Scholar 

  12. Herfarth KK, Izwekowa O, Thilmann C et al (2003) Linac-based radiosurgery of cerebral melanoma metastases. Analysis of 122 metastases treated in 64 patients. Strahlenther Onkol 179:366–371

    PubMed  Google Scholar 

  13. Wiggenraad R, Verbeek-de KA, Kal HB et al (2011) Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol 98:292–297

    Article  PubMed  Google Scholar 

  14. Yang HC, Kano H, Lunsford LD et al (2011) What factors predict the response of larger brain metastases to radiosurgery? Neurosurgery 68:682–690

    Article  PubMed  Google Scholar 

  15. Marchetti M, Milanesi I, Falcone C et al (2011) Hypofractionated stereotactic radiotherapy for oligometastases in the brain: a single-institution experience. Neurol Sci 32:393–399

    Article  PubMed  Google Scholar 

  16. Vogelbaum MA, Angelov L, Lee SY et al (2006) Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg 104:907–912

    Article  PubMed  Google Scholar 

  17. Narayana A, Chang J, Yenice K et al (2007) Hypofractionated stereotactic radiotherapy using intensity-modulated radiotherapy in patients with one or two brain metastases. Stereotact Funct Neurosurg 85:82–87

    Article  PubMed  Google Scholar 

  18. Ernst-Stecken A, Ganslandt O, Lambrecht U et al (2006) Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol 81:18–24

    Article  PubMed  Google Scholar 

  19. Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1997

    Article  PubMed  CAS  Google Scholar 

  20. Thames HD Jr, Withers HR, Peters LJ, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    Article  PubMed  Google Scholar 

  21. Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239

    Article  PubMed  Google Scholar 

  22. Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  23. Yoshii Y (2008) Pathological review of late cerebral radionecrosis. Brain Tumor Pathol 25:51–58

    Article  PubMed  Google Scholar 

  24. Jain R, Narang J, Sundgren PM et al (2010) Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 100:17–29

    Article  PubMed  Google Scholar 

  25. Korytko T, Radivoyevitch T, Colussi V et al (2006) 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys 64:419–424

    Article  PubMed  Google Scholar 

  26. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No statement made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wiggenraad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiggenraad, R., Verbeek-de Kanter, A., Mast, M. et al. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. Strahlenther Onkol 188, 696–701 (2012). https://doi.org/10.1007/s00066-012-0122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0122-3

Keywords

Schlüsselwörter

Navigation