Skip to main content
Log in

Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy?

Kann die Behandlung von pädiatrischen Hodgkin-Lymphomen durch PET-Bildgebung und Protonenbestrahlung verbessert werden?

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

To explore a new positron emission tomography (PET)-based target concept for pediatric Hodgkin’s lymphoma (PHL).

Patients and methods

For 10 patients, the planning target volume PTV1 was based on initial CT tumor extension and PTV2 on anatomy-related PET-positive lymph node levels after chemotherapy. The treatment techniques investigated (prescribed dose 19.8 Gy) comprised opposed-field (2F), intensity-modulated photon (IMXT), and single-field (PS) proton techniques. Treatment concepts were compared concerning dose-volume histogram (DVH) parameters and organ-equivalent doses (OED).

Results

The median PTV1 and PTV2 were 902 ± 555 cm3 and 281 ± 228 cm3. When using PTV2 instead of PTV1 for all techniques, the D2% of the heart was reduced from 14 to 9 Gy and the Dmean of the thyroid from 16.6 to 2.7 Gy. Low- (20%), median- (50%), and high-dose volumes (80%) were reduced by 60% for the heart and bones using PTV2. PS reduced the high-dose volume of the lungs and the heart by up to 60%. IMXT increased the low-dose volumes and OED. PTV2 reduced OED by 54 ± 10% for all organs at risk.

Conclusion

PTV2 has a high impact on the treated volume and on sparing of organs at risk. The combination of an adaptive target volume definition with protons could contribute to future PHL treatment concepts.

Zusammenfassung

Ziel

Untersuchung einer Positronenemissionstomographie(PET)-basierten Volumendefinition sowie von High-Tech-Bestrahlungstechniken bei pädiatrischen Hodgkin-Lymphomen (PHL).

Patienten und Methode

Für 10 Patienten wurde das Planungsvolumen PTV1 („planning target volume“) auf der initialen CT-basierten Tumorausdehnung und PTV2 auf den anatomischen Bereichen, welche PET-positive Lymphknoten nach Chemotherapie umfassten, bestimmt. Die untersuchten Bestrahlungstechniken (Zieldosis: 19,8 Gy) umfassten 2-Felder-Photonen (2F), intensitätsmodulierte Photonen (IMXT) und Einfelder-Protonen (PS). Behandlungskonzepte bzw. -techniken wurden anhand von Dosis-Volumen-Histogramm (DVH)-Parametern sowie der Organäquivalenzdosis (OED) verglichen.

Ergebnisse

Das mittlere PTV1 bzw. PTV2 betrug 902 ± 555 cm3 und 281 ± 228 cm3. Die Verwendung von PTV2 statt PTV1 reduzierte D2% des Herzens von 14 auf 9 Gy und Dmean der Schilddrüse von 16,6 auf 2,7 Gy für alle Bestrahlungstechniken. Niedrig- (20%), Mittel- (50%) und Hochdosisvolumen (80%) wurden bei Verwendung von PTV2 für Herz und Knochen um 60% reduziert. PS reduzierte das Lungen- bzw. Herz-Hochdosisvolumen um bis zu 60%. IMXT erhöhte das Niedrigdosisvolumen und die OED. PTV2 reduzierte die OED um 54 ± 10% für alle Risikoorgane.

Schlussfolgerung

PTV2 hatte großen Einfluss auf das bestrahlte Volumen und auf die Risikoorganschonung. Eine adaptierte Volumendefinition in Kombination mit Protonentherapie könnte zu zukünftigen PHL-Behandlungskonzepten beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allard A, Haddy N, Le Deley M et al (2010) Role of radiation dose in the risk of secondary leukemia after a solid tumor in childhood treated between 1980 and 1999. Int J Radiat Oncol Biol Phys 78:1474–1482

    Article  PubMed  Google Scholar 

  2. Andolino D, Hoene T, Xiao L et al (2011) Dosimetric comparison of involved-field three-dimensional conformal photon radiotherapy and breast-sparing proton therapy for the treatment of hodgkin’s lymphoma in female paediatric patients. Int J Radiat Oncol Biol Phys 81:e667–e671

    Article  PubMed  Google Scholar 

  3. Bhatia S, Yasui Y, Robison LL et al (2003) High risk of subsequent neoplasms continues with extended follow-up of childhood hodgkin’s disease: report from the late effects study group. J Clinl Oncol 21:4386–4394

    Article  Google Scholar 

  4. Bhatti P, Veiga L, Ronckers C et al (2010) Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res 174:741–752

    Article  PubMed  CAS  Google Scholar 

  5. Bölling T, Kreuziger DC, Ernst I et al (2011) Retrospective, Monocentric Analysis of Late Effects after Total Body Irradiation (TBI) in Adults. Strahlenther Onkol 187:311–315

    Article  PubMed  Google Scholar 

  6. Bölling T, Könemann S, Ernst I, Willich N (2008) Late effects of thoracic irradiation in children. Strahlenther Onkol 184:289–295

    Article  PubMed  Google Scholar 

  7. Brenner D, Hall E (2008) Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother Oncol 86:165–170

    Article  PubMed  Google Scholar 

  8. Chapet O, Kong F, Quint LE et al (2005) CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 63:170–178

    Article  PubMed  Google Scholar 

  9. Dasu A, Toma-Dasu I, Olofsson J, Karlsson M (2005) The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol 44:339–347

    Article  PubMed  Google Scholar 

  10. Dieckmann K, Widder J, Pötter R (2002) Long-term side effects of radiotherapy in survivors of childhood cancer. Front Radiat Ther Oncol 37:57–68

    Article  PubMed  CAS  Google Scholar 

  11. Dörr W, Herrmann T (2002) Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. I Radiol Prot 22:A117–A121

    Article  Google Scholar 

  12. Dörr W, Herrmann T (2002) Second primary tumors after radiotherapy for malignancies. Strahlenther Onkol 178:357–362

    Article  PubMed  Google Scholar 

  13. Dores G, Metayer C, Curtis R et al (2002) Second malignant neoplasms among long-term survivors of hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol 20:3484–3494

    Article  PubMed  Google Scholar 

  14. Fotina I, Lütgendorf-Caucig C, Stock M et al (2012) Critical discussion of evaluation parameters for inter observer variability in target definition for radiation therapy. Strahlenther Onkol 188:160–167

    Article  PubMed  CAS  Google Scholar 

  15. Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18f]fluorodeoxyglucose positron emission tomography in pediatric hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27:4385–4391

    Article  PubMed  Google Scholar 

  16. GHSG, HD 18 Trial. http://en.ghsg.org/active-trials/articles/hd18-study (27. Aug 2012)

  17. Grégoire V, Levendag P, Ang KK et al (2003) CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 69:227–236

    Article  PubMed  Google Scholar 

  18. Hill D, Gilbert E, Dores G et al (2005) Breast cancer risk following radiotherapy for Hodgkin lymphoma: modification by other risk factors. Blood 106:3358–3365

    Article  PubMed  CAS  Google Scholar 

  19. Hillbrand M, Georg D, Gadner H et al (2008) Abdominal cancer during early childhood: A dosimetric comparison of proton beams to standard and advanced photon radiotherapy. Radiother Oncol 89:141–149

    Article  PubMed  Google Scholar 

  20. Hillbrand M, Georg D (2010) Assessing a set of optimal user interface parameters for intensity-modulated proton therapy planning. J Appl Clin Med Phys 11:3219

    PubMed  Google Scholar 

  21. Hodgson DC, Hudson MM, Constine LS et al (2007) Pediatric hodgkin lymphoma: maximizing efficacy and minimizing toxicity. Semin Radiat Oncol 17:230–242

    Article  PubMed  Google Scholar 

  22. ICRU Report 78– Prescribing, Recording, and Reporting Proton-Beam Therapy. The International Commission on Radiation Units and Measurements 2007

  23. ICRU Report 83– Prescribing, Recording and Reporting Intensity-Modulated-Photon-Beam Therapy (IMRT). The International Commission on Radiation Units and Measurements 2010

  24. Hermann T, Baumann M, Dörr W (2006) Klinische Strahlenbiologie. 4th edn, Elsevier, München

  25. Kaatsch P, Deblind D, Blettner M, Spix C (2009) Second malignant neoplasms after childhood cancer in germany—results from the long-term follow-up of the German Childhood Cancer Registry. Strahlenther Onkol 185:8–10

    Article  PubMed  Google Scholar 

  26. Kluge R, Körholz D (2011) Role of FDG-PET in Staging and Therapy of Children with Hodgkin Lymphoma. Klin Padiatr 223:315–319

    Article  PubMed  CAS  Google Scholar 

  27. Koeck J, Abo-Madyam Y, Lohr F et al (2012) Radiotherapy for early mediastinal Hodgkin Lymphoma: according to the German Hodgkin Study Group (GHSG): the roles of intensity -modulated radiotherapy and involved-node radiotherapy. Int J Radiat Incol Biol Phys 83:268–276

    Article  Google Scholar 

  28. Körholz D, Wallace H, Landman-Parker J (2007) EuroNet-PHL-C1: first international Inter-Group Study for classical Hodgkin’s lymphoma in children and adolescents

  29. Kragl G, Baier F, Lutz S et al (2011) Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys 21:91–101

    PubMed  Google Scholar 

  30. Kry S, Salehpour M, Followill D et al (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62:195–203

    Google Scholar 

  31. Lengelé B, Nyssen-behets C, Scalliet P (2007) Anatomical bases for the radiological delineation of lymph node areas. Upper limbs, chest and abdomen. Radiother Oncol 84:335–347

    Article  PubMed  Google Scholar 

  32. Lengelé B, Scalliet P (2009) Anatomical bases for the radiological delineation of lymph node areas. Part III: Pelvis and lower limbs. Radiother Oncol 92:22–33

    Article  PubMed  Google Scholar 

  33. Lorentini S, Amichetti M, Spiazzi L et al (2012) Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessement. Strahlenther Onkol 188:216–225

    Article  PubMed  CAS  Google Scholar 

  34. Lütgendorf-Caugig C, Fotina I, Gallop-Evans E et al (2012) Multi-center evaluation of different target volume delineation concepts in Paediatric Hodgkin Lymphoma (PHL): a case study. Strahlenther Onkol 188:1025–1030

    Article  Google Scholar 

  35. MacDonald SM, Trofimov A, Safai S et al (2011) Proton radiotherapy for pediatric central nervous system germ cell tumors: early clinical outcomes. Int J Radiat Incol Biol Phys 79:121–129

    Article  Google Scholar 

  36. Mansur DB, Klein EE, Maserang BP (2007) Measured peripheral dose in pediatric radiation therapy: a comparison of intensity-modulated and conformal techniques. Radiother Oncol 82:179–184

    Article  PubMed  Google Scholar 

  37. Mauz-Koerholz C, Hasenclever D, Dörffel W et al (2010) Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol 28:3680–3686

    Article  CAS  Google Scholar 

  38. Merchant T (2009) Proton beam therapy in pediatric oncology. Cancer J 15:298–305

    Article  PubMed  Google Scholar 

  39. Müller HL, Gebhardt U, Warmuth-Metz M et al (2012) Meningioma as second malignant neoplasm after oncological treatment during childhood. Strahlenther Onkol 118:438–441

    Article  Google Scholar 

  40. Oeffinger K, Mertens A, Sklar C et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582

    Article  PubMed  CAS  Google Scholar 

  41. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 93:219–222

    PubMed  Google Scholar 

  42. Paulino AC, Skwarchuk M (2002) Intensity-modulated radiation therapy in the treatment of children. Med Dosim 27:115–120

    Article  PubMed  Google Scholar 

  43. Peeters J, Meitert J, Paulides M et al (2009) Late effects suveillance system after childhoof cancer in germany, austria and parts of switzerland—update 2009. Strahlenther Onkol 185:5–7

    Article  PubMed  Google Scholar 

  44. Poetter R (1999) Paediatric Hodgkin’s disease. Eur J Cancer 35:1466–1474

    Article  Google Scholar 

  45. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64 (The Radiation Research Society)

    Article  PubMed  CAS  Google Scholar 

  46. Schellong G, Riepenhausen M, Bruch C et al (2010) Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for hodgkin disease in children and adolescents: Report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer 55:1145–1152

    Article  PubMed  Google Scholar 

  47. Schneider U, Lomax A, Pemler P et al (2006) The impact of imrt and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol 182:647–652

    Article  PubMed  Google Scholar 

  48. Schneider U, Zwahlen D, Ross D, Kaser-Hotz B (2005) Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys 61:1510–1515

    Article  PubMed  Google Scholar 

  49. Schneider U (2009) Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys 36:1138–1143

    Article  PubMed  Google Scholar 

  50. Schneider U, Sumilla M, Robotka J et al (2011) Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol 6:67

    Article  PubMed  Google Scholar 

  51. Schneider U, Sumila M, Robotka J (2011) Site-specific dose response relationship for cancer induction from combined Japanese A-bomb and Hodgkin cohorts for doses relevant for radiotherapy. Theor Biol Med Model 8:27

    Article  PubMed  Google Scholar 

  52. Slanina J, Heinemann F, Henne K et al (1999) Second malignancies following treatment of Hodgkin’s disease: the Freiburg patients 1940–1991. Strahlenther Onkol 175:154–161

    Article  PubMed  CAS  Google Scholar 

  53. Timmermann B (2010) Proton beam therapy for childhood malignancies: status report. Klin Padiatr 222:127–133

    Article  PubMed  CAS  Google Scholar 

  54. Welte B, Suhr P, Bottke D et al (2010) Second mailgnancies in high-dose areas of previous tumor radiotherapy. Strahlenther Onkol 186:174–179

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Uwe Schneider for advice on OED calculations. Financial support by the Austrian Federal Ministry of Economy, Family, and Youth and the Austrian Foundation for Research, Technology, and Development is gratefully acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Knäusl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knäusl, B., Lütgendorf-Caucig, C., Hopfgartner, J. et al. Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy?. Strahlenther Onkol 189, 54–61 (2013). https://doi.org/10.1007/s00066-012-0235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0235-8

Keywords

Schlüsselwörter

Navigation