Skip to main content
Log in

Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer

Dosimetrische Auswertung von Boostbestrahlungen des lokalen Prostatakarzinoms mittels interstitieller High-Dose-Rate-Brachytherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk.

Material and Methods:

Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, Dmin) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (Dr) and urethra (Du), dose to volume of 2 cm3 of the rectum (D2ccm), and 0.1 cm3 and 1% of the urethra (D0.1ccm and D1) were determined. Nonparametric correlation analysis was performed between these parameters.

Results:

The median number of needles was 16, the mean prostate volume (Vp) was 27.1 cm3. The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the Dmin was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D2ccm = 49% for the rectum, D0.1ccm = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(Dr,D2ccm) = 0.69, R(Du,D0.1ccm) = 0.64, R(Du,D1) = 0.23.

Conclusion:

US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

Zusammenfassung

Ziel:

Quantitative Auswertung der Dosisverteilungen von High-Dose-Rate-(HDR-)Brachytherapie-Multikatheterimplantaten bezüglich Zielvolumenerfassung, Dosishomogenität und Dosisbelastung kritischer Organe.

Material und Methodik:

Zur Beurteilung wurden die Dosis-Volumen-Histogramme (DVH) der Bestrahlungspläne von 174 Patienten herangezogen. Die verschriebene Dosierung der auf transrektalem Ultraschall basierenden Bestrahlungspläne betrug 10 Gy (= 100%) als mittlere Dosis an der Zielvolumenoberfläche (Abbildung 1). Die Toleranzdosis für Rektum und Urethra wurde mit 80% bzw. 120% definiert. Dosis-Volumen-Parameter für das Zielvolumen (V90, V100, V150, V200, D90, Dmin) und die Qualitätsindizes (DNR [„dose nonuniformity ratio“], DHI [Dosishomogenitätsindex], CI [„coverage index“], COIN [Konformitätsindex]) wurden berechnet (Tabelle 5). Sowohl die maximale Dosis in Referenzpunkten des Rektums (Dr) und der Urethra (Du) als auch die Dosis im absoluten Volumen von 2 cm3 des Rektums (D2ccm; Abbildung 2a) und die Dosiswerte für Volumina von 0,1 cm3 und 1% der Urethra (D0.1ccm und D1; Abbildung 2b) wurden bestimmt (Tabelle 4). Anschließend wurde eine parameterfreie Korrelationsanalyse zwischen diesen Parametern durchgeführt.

Ergebnisse:

Es wurden im Mittel 16 Nadeln pro Applikation implantiert, das mittlere Volumen der Prostata (Vp) wurde mit 27,1 cm3 bestimmt. Die Mittelwerte der relativen Dosis-Volumen-Parameter der Prostata für V90, V100, V150 und V200 wurden mit 99%, 97%, 39% und 13% berechnet. Das mittlere Volumen für die D90 wurde mit 109%, die minimale Dosis im Zielvolumen Dmin mit 87% bestimmt (Tabelle 1). Für die Dosis in den Referenzpunkten an Rektum und Urethra wurden als Mittelwerte 75% bzw. 119% erreicht. Die gemittelten Volumendosiswerte wurden mit D2ccm = 49% für das Rektum sowie mit D0.1ccm = 126% und D1 = 140% für die Urethra berechnet (Tabelle 3). Die mittlere DNR betrug 0,37, wobei sich ein DHI von 0,60 ergab. Der Mittelwert für den COIN lag bei 0,66 (Tabelle 2). Die Spearman-Rangkorrelationskoeffizienten für die Volumendosis von Rektum und Urethra ergaben sich mit R(Dr ,D2ccm) = 0.69 (Abbildung 3), R(Du,D0.1ccm) = 0,64 und R(Du,D1) = 0,23 (Abbildungen 4a und 4b).

Schlussfolgerung:

Die ultraschallbasierte Bestrahlungsplanung für die HDR-Brachytherapie der Prostata ermöglicht die genaue Definition der Implantatgeometrie und liefert akzeptable Dosisverteilungen. In der Mehrzahl der betrachteten Fälle konnte so die Dosis an Urethra und Rektum unterhalb der Toleranzdosis gehalten werden. Die Dosis an den Referenzpunkten des Rektums korrelierte gut mit den Dosis-Volumen-Parametern. Für die charakteristische Dosisbeschreibung an der Urethra wird der Dosis- Volumen-Parameter D1 empfohlen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akimoto T, Ito K, Saitoh JI, et al. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity. Int J Radiat Oncol Biol Phys 2005;63:463–71.

    Google Scholar 

  2. Akimoto T, Katoh H, Noda SE, et al. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity. Int J Radiat Oncol Biol Phys 2005;63:472–8.

    Google Scholar 

  3. Ash D, Flynn A, Battermann J, et al. ESTRO/EAU/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol 2000;57:315–21.

    Article  CAS  Google Scholar 

  4. Baltas D, Kolotas C, Geramani K, et al. A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys 1998;40:515–24.

    CAS  Google Scholar 

  5. Bölling T, Moustakis C, Elsayed H, et al. Rectum dose reduction and individual treatment plan optimization for high-dose-rate prostate brachytherapy. Brachytherapy 2007;6:280–5.

    Article  Google Scholar 

  6. Charra-Brunaud C, Hsu ICJ, Weinberg V, Pouliot J. Analysis of interaction between number of implant catheters and dose-volume histograms in prostate high-dose-rate brachytherapy using a computer model. Int J Radiat Oncol Biol Phys 2003;56:586–91.

    Article  Google Scholar 

  7. Citrin D, Ning H, Guion P, et al. Inverse treatment planning based on MRI for HDR prostate brachytherapy. Int J Radiat Oncol Biol Phys 2005;61:1267–75.

    Google Scholar 

  8. Demanes DJ, Rodriguez RR, Altieri GA. High dose rate prostate brachytherapy: the California Endocurietherapy (CET) method. Radiother Oncol 2000;57:289–96.

    Article  CAS  Google Scholar 

  9. Demanes DJ, Rodriguez RR, Schour, et al. High-dose-rate intensity-modulated brachytherapy with external beam radiotherapy for prostate cancer: California Endocurietherapy's 10-year results. Int J Radiat Oncol Biol Phys 2005;61:1306–16.

    Google Scholar 

  10. Dörr W, Jaal J, Zips D. Prostate cancer: biological dose considerations and constraints in tele- and brachytherapy. Strahlenther Onkol 2007;183:Special Issue 2:14–5.

    Article  Google Scholar 

  11. Edmundson GK, Rizzo NR, Teahan M, et al. Concurrent treatment planning for outpatient high-dose-rate prostate template implants. Int J Radiat Oncol Biol Phys 1993;27:1215–23.

    CAS  Google Scholar 

  12. Edmundson GK, Yan D, Martinez AA. Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys 1995;33:1257–63.

    CAS  Google Scholar 

  13. Fang FM, Wang YM, Wang CJ, et al. Comparison of the outcome and morbidity for localized or locally advanced prostate cancer treated by high-dose-rate brachytherapy plus external beam radiotherapy (EBRT) versus EBRT alone. Jpn J Clin Oncol 2008;38:474–9.

    Article  Google Scholar 

  14. Goldner G, Bombosch V, Geinitz H, et al. Moderate risk-adapted dose escalation with three-dimensional conformal radiotherapy of localized prostate cancer from 70 to 74 Gy. First report on 5-year morbidity and biochemical control from a prospective Austrian-German multicenter phase II trial. Strahlenther Onkol 2009;185:94–100.

    Article  Google Scholar 

  15. Herrmann MKA, Gsänger T, Strauss A, et al. The impact of prostate volume changes during external-beam irradiation in consequence of HDR brachytherapy in prostate cancer treatment. Strahlenther Onkol 2009;185:397–403.

    Article  Google Scholar 

  16. Hoskin PJ. High-dose-rate brachytherapy boost treatment in radical radiotherapy for prostate cancer. Radiother Oncol 2000;57:285–8.

    Article  CAS  Google Scholar 

  17. Hsu IC, Pickett B, Shinohara K, et al. Normal tissue dosimetric comparison between HDR prostate implant boost and conformal external beam radiotherapy boost: potential for dose escalation. Int J Radiat Oncol Biol Phys 2000;46:851–8.

    CAS  Google Scholar 

  18. Hsu ICJ, Cabrera AR, Weinberg V, et al. Combined modality treatment with high-dose-rate brachytherapy boost for locally advanced prostate cancer. Brachytherapy 2005;4:202–6.

    Article  Google Scholar 

  19. Hungarian National Cancer Registry. Morbidity and mortality data of patients with tumour disease. Budapest: National Institute of Oncology, 2006.

    Google Scholar 

  20. Jacob D, Raben A, Sarkar A, et al. Anatomy-based inverse planning simulated annealing optimization in high-dose-rate prostate brachytherapy: significant dosimetric advantage over other optimization techniques. Int J Radiat Oncol Biol Phys 2008;72:820–7.

    Google Scholar 

  21. Jo J, Hiratsuka J, Fujii T, et al. High-dose-rate iridium-192 afterloading therapy combined with external beam radiotherapy for T1c-T3bN0M0 prostate cancer. Urology 2004;64:556–60.

    Article  Google Scholar 

  22. Khoo VS. Radiotherapeutic techniques for prostate cancer, dose escalation and brachytherapy. Clin Oncol (R Coll Radiol) 2005;17:560–71.

    CAS  Google Scholar 

  23. Kini VR, Edmundson GK, Vicini FA, et al. Use of three-dimensional radiation therapy planning tools and intraoperative ultrasound to evaluate high-dose-rate prostate brachytherapy implants. Int J Radiat Oncol Biol Phys 1999;43:571–8.

    CAS  Google Scholar 

  24. Kolkman-Deurloo IKK, Deleye XGJ, Jansen PP, Koper PCM. Anatomy based inverse planning in HDR prostate brachytherapy. Radiother Oncol 2004;73:73–7.

    Article  Google Scholar 

  25. Kovács G, Melchert C, Sommerauer M, Walden O. Intensity modulated high-dose-rate brachytherapy boost complementary to external beam radiation for intermediate- and high-risk localized prostate cancer patients — how we do it in L?beck/Germany. Brachytherapy 2007;6:142–8.

    Article  Google Scholar 

  26. Kovács G, Pötter R, Loch T, et al. GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol 2005;74:137–48.

    Article  Google Scholar 

  27. Mahmoudieh A, Tremblaya C, Beaulieu L, et al. Anatomy-based inverse planning dose optimization in HDR prostate implant: a toxicity study. Radiother Oncol 2005;75:318–24.

    Article  Google Scholar 

  28. Martin T, Hey-Koch S, Strassmann G, et al. 3D interstitial HDR brachytherapy combined with 3D external beam radiotherapy and androgen deprivation for prostate cancer. Strahlenther Onkol 2000;176:361–7.

    Article  CAS  Google Scholar 

  29. Martinez AA, Pataki I, Edmundson G, et al. Phase II prospective study of the use of conformal high-dose-rate brachytherapy as monotherapy for the treatment of favourable stage prostate cancer: a feasibility report. Int J Radiat Oncol Biol Phys 2001;49:61–9.

    CAS  Google Scholar 

  30. Mate TP, Gottesman JE, Hatton J, et al. High-dose-rate afterloading 192-iridium prostate brachytherapy: feasibility report. Int J Radiat Oncol Biol Phys 1998;41:525–33.

    Article  CAS  Google Scholar 

  31. Ménard C, Susil RC, Choyke P, et al. MRI-guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys 2004;59:1414–23.

    Google Scholar 

  32. Merrick GS, Butler WM, Wallner KE, et al. The impact of radiation dose to the urethra on brachytherapy-related dysuria. Brachytherapy 2005;4:45–50.

    Article  Google Scholar 

  33. Morton GC. The emerging role of high-dose-rate brachytherapy for prostate cancer. Clin Oncol (R Coll Radiol) 2005;17:219–27.

    CAS  Google Scholar 

  34. Murakami N, Itami J, Okuma K, et al. Urethral dose and increment of International Prostate Symptom Score (IPSS) in transperineal permanent interstitial implant (TPI) of prostate cancer. 2008;184:515–9.

    Google Scholar 

  35. Nag S, Bice W, Dewyngaert K, et al. The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis. Int J Radiat Oncol Biol Phys 2000;46:221–30.

    Article  CAS  Google Scholar 

  36. Nairz O, Merz F, Deutschmann H, et al. A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients. Strahlenther Onkol 2008;184:663–7.

    Article  Google Scholar 

  37. Nickers P, Lenaerts E, Thissen B, Deneufbourg JM. Does inverse planning applied to iridium192 high dose rate prostate brachytherapy improve the optimization of the dose afforded by the Paris system? Radiother Oncol 2005;74:131–6.

    Article  CAS  Google Scholar 

  38. Nickers P, Thissen B, Jansen N, Deneufbourg JM. 192-Ir or 125-I prostate brachytherapy as a boost to external beam radiotherapy in locally advanced prostatic cancer: a dosimetric point of view. Radiother Oncol 2006;78:47–52.

    Article  Google Scholar 

  39. Pieters BR, van de Kamer JB, van Herten YR, et al. Comparison of biologically equivalent dose-volume parameters for the treatment of prostate cancer with concomitant boost IMRT versus IMRT combined with brachytherapy. Radiother Oncol 2008;88:46–52.

    Article  Google Scholar 

  40. Pinkawa M, Fischedick K, Treusacher P, et al. Dose-volume impact in high-dose-rate iridium-192 brachytherapy as a boost to external beam radiotherapy for localized prostate cancer — a phase II study. Radiother Oncol 2006;78:41–6.

    Article  Google Scholar 

  41. Pinkawa M, Gagel B, Asadpour B, et al. Seed displacements after permanent brachytherapy for prostate cancer in dependence on the prostate level. Strahlenther Onkol 2008;184:520–5.

    Article  Google Scholar 

  42. Polat B, Guenther I, Wilbert J, et al. Intra-fractional uncertainties in image- guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 2008;184:668–73.

    Article  Google Scholar 

  43. Rades D, Schwarz R, Todorovic M, et al. Experiences with a new high-dose-rate brachytherapy (HDR-BT) boost technique for T3b prostate cancer. Strahlenther Onkol 2007;183:398–402.

    Article  Google Scholar 

  44. Sathya JR, Davis IR, Julian JA, et al. Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol 2005;23:1192–9.

    Article  Google Scholar 

  45. Sautter-Bihl ML, Sedlmayer F, Wiegel T. Postoperative radiotherapy for advanced prostate cancer. Improved local control translates into increased survival. Strahlenther Onkol 2009;185:485–7.

    Article  Google Scholar 

  46. Stromberg J, Martinez A, Gonzalez J, et al. Ultrasound-guided high-doserate conformal brachytherapy boost in prostate cancer: treatment description and preliminary results of a phase I/II clinical trial. Int J Radiat Oncol Biol Phys 1995;33:161–71.

    CAS  Google Scholar 

  47. Sumida I, Shiomi H, Yoshioka V, et al. Optimization of dose distribution for HDR brachytherapy of the prostate using attraction-repulsion model. Int J Radiat Oncol Biol Phys 2006;64:643–9.

    Google Scholar 

  48. Vargas CE, Ghilezan M, Hollander M, et al. A new model using number of needles and androgen deprivation to predict chronic urinary toxicity for high or low dose rate prostate brachytherapy. J Urol 2005;174:882–7.

    Article  Google Scholar 

  49. Vicini FA, Abner A, Baglan KL, et al. Defining a dose response relationship with radiotherapy for prostate cancer: is more really better? Int J Radiat Oncol Biol Phys 2001;51:1200–8.

    CAS  Google Scholar 

  50. Yoshioka Y, Nishimura T, Kamata M, et al. Evaluation of anatomy-based dwell position and inverse optimization in high-dose-rate brachytherapy of prostate cancer: a dosimetric comparison to a conventional cylindrical dwell position, geometric optimization, and dose-point optimization. Radiother Oncol 2005;75:311–7.

    Article  Google Scholar 

  51. Yoshioka Y, Nose T, Yoshida K, et al. High-dose-rate brachytherapy as monotherapy for localized prostate cancer: a retrospective analysis with special focus on tolerance and chronic toxicity. Int J Radiat Oncol Biol Phys 2003;56:213–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Fröhlich M.Sc., M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, G., Ágoston, P., Lövey, J. et al. Dosimetric Evaluation of High-Dose-Rate Interstitial Brachytherapy Boost Treatments for Localized Prostate Cancer. Strahlenther Onkol 186, 388–395 (2010). https://doi.org/10.1007/s00066-010-2081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2081-x

Key Words

Schlüsselwörter

Navigation