Skip to main content
Log in

A Method for Improved Verification of Entire IMRT Plans by Film Dosimetry

Eine Methode zur verbesserten Dosisverifikation von Gesamt-IMRT-Plänen mittels Filmdosimetrie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

In one entire intensity-modulated radiation therapy (IMRT) plan, beams coming from different directions have different penetration depths in the phantom. Therefore, verifying an entire IMRT plan with a calibration curve for a single depth is error-prone. The aim of this study is to improve the quality of the dose verification of entire IMRT plans with film dosimetry.

Material and Methods:

The dose response of the Kodak EDR2 film to 6-MV photon beams was investigated in a solid-water phantom for different field sizes and depths. A method is proposed for evaluating measurements of the optical density with a calibration curve that takes the response at different depths into account. The described method was tested for three entire IMRT plans. For this purpose, calculated and measured dose distributions were compared, where the measured dose distribution was evaluated using a calibration curve for one depth (5 cm) and a calibration curve derived according to the proposed method.

Results:

All measurements suggest that the dose response significantly depends on the depth in the phantom, while dependencies on field size and off-axes distance are smaller. For tested plans, gamma index < 1 (using 3 mm distance and 3% dose as constrains) was reached for 81% and 91% of the points for one plan (prostate), 81% and 86% for the second plan (prostate), and 74% and 85% for the third plan (liver) when using two calibration curves, respectively.

Conclusion:

The method described here corrects for the change of the film response due to the variation of the scattered radiation with the penetration depth. This is achieved by a modified calibration curve, which can enhance the accuracy of the verification of entire IMRT plans.

Hintergrund und Ziel:

In einem Gesamt-IMRT-Plan (intensitätsmodulierte Radiotherapie) kommen Felder aus verschiedenen Winkeln und haben verschiedene Eindringtiefen im Phantom. Deshalb ist die Verifikation eines Gesamt-IMRT-Plans mit einer Kalibrierungskurve für eine Eindringtiefe nicht fehlerfrei. Ziel dieser Arbeit ist die Verbesserung der Dosisverifikation von Gesamt-IMRT-Plänen mittels Filmdosimetrie.

Material und Methodik:

Das Ansprechvermögen des EDR2-Films (Kodak) auf 6-MV-Photonen wurde für verschiedene Feldgrößen und Tiefen in einem Festwasserphantom untersucht. Es wird eine Methode zur Verifikation der Messungen unter Verwendung einer Kalibrierungskurve, die verschiedene Tiefen berücksichtigt, vorgeschlagen. Die beschriebene Methode wurde an drei Gesamt-IMRT-Plänen getestet. Dazu wurden gemessene und gerechnete Dosisverteilungen verglichen, wobei die gemessene Dosisverteilung mit einer Kalibrierungskurve für eine Eindringtiefe (5 cm) und mit einer auf der vorgeschlagenen Methode beruhenden Kalibrierungskurve ausgewertet wurde.

Ergebnisse:

Alle Messungen weisen darauf hin, dass das Ansprechvermögen des EDR2-Films signifikant von der Tiefe im Phantom abhängt, während die Abhängigkeiten von der Feldgröße kleiner sind. Bei den getesteten Plänen wurde jeweils ein Gamma-Index < 1 (mit 3 mm Abstand und 3% Dosis) für 81% bzw. 91% der Punkte in erstem Plan (Prostata), 81% bzw. 86% in zweitem Plan (Prostata) und 74% bzw. 85% in drittem Plan (Leber) erreicht.

Schlussfolgerung:

Die hier beschriebene Methode kompensiert die Änderung des Ansprechvermögens radiographischer Filme aufgrund der Variation der Streustrahlung mit der Eindringtiefe. Dies wird mit einer modifizierten Kalibrierungskurve erreicht, die die Genauigkeit der Verifikation von Gesamt-IMRT-Plänen erhöhen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arimoto T, Usubuchi H, Matsuzawa T, et al. Small volume multiple non-coplanar arc radiotherapy for tumors of the lung, head, and neck and the abdominopelvic region. In: Lemke HU, ed. CAR 1998. Computer assisted radiology and surgery. Tokyo: Elsevier; 1998:257–61.

    Google Scholar 

  2. Auberger T, Seydl K, Futschek T, et al. Photons or protons: precision radiotherapy of lung cancer. Strahlenther Onkol 2007;183:Spec No 2:3–6.

    Article  PubMed  Google Scholar 

  3. Blomgren H, Lax I, Näslund I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 1995;34:861–70.

    Article  PubMed  CAS  Google Scholar 

  4. Bogart JA, Alpert TE, Kilpatrick MC, et al. Dose-intensive thoracic radiation therapy for patients at high risk with early-stage non-small-cell lung cancer. Clin Lung Cancer 2005;6:350–4.

    Article  PubMed  Google Scholar 

  5. Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005;61:318–28.

    PubMed  Google Scholar 

  6. Chang MY, Sugarbaker DJ. Surgery for early stage non-small-cell lung cancer. Semin Surg Oncol 2003;21:74–84.

    Article  PubMed  Google Scholar 

  7. Cox JD, Stetz J, Paiak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 1995;31:1341–6.

    PubMed  CAS  Google Scholar 

  8. D’Amato TA, Galloway M, Szydlowski G, et al. Intraoperative brachytherapy following thoracoscopic wedge resection of stage I lung cancer. Chest 1998;114:1112–5.

    Article  PubMed  CAS  Google Scholar 

  9. Dosoretz DE, Katin MJ, Blitzer PH, et al. Medically inoperable lung carcinoma: the role of radiation therapy. Semin Radiat Oncol 1996;6:98–104.

    Article  PubMed  Google Scholar 

  10. Dubray B, Henry-Amar M, Meerwaldt JH, et al. Radiation induced lung damage after thoracic irradiation for Hodgkin’s disease: the role of fractionation. Radiother Oncol 1995;36:211–7.

    Article  PubMed  CAS  Google Scholar 

  11. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–22.

    PubMed  CAS  Google Scholar 

  12. Ernst-Stecken A, Lambrecht U, Mueller R, et al. Hypofractionated stereotactic radiotherapy for primary and secondary intrapulmonary tumors. First results of a phase I/II study. Strahlenther Onkol 2006;182:696–702.

    Article  PubMed  Google Scholar 

  13. Fowler JF, Tomé WA, Fenwick JD, et al. A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 2004;60:1241–56.

    Article  PubMed  Google Scholar 

  14. Graham PH, Gebski VJ, Langlands AO. Radical radiotherapy for early on-small-cell lung cancer. Int J Radiat Oncol Biol Phys 1995;31:261–6.

    PubMed  CAS  Google Scholar 

  15. Hara R, Itami J, Kondo T, et al. Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol 2002;63:159–63.

    Article  PubMed  Google Scholar 

  16. Hata M, Tokuuye K, Kagei K, et al. Hypofractionated high-dose proton beam therapy for stage I non-small-cell lung cancer: preliminary results of a phase I/II clinical study. Int J Radiat Oncol Biol Phys 2007;68:786–93.

    PubMed  Google Scholar 

  17. Hof H, Herfarth KK, Münter M, et al. Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 2003;56:335–41.

    Article  PubMed  Google Scholar 

  18. Imamura F, Ueno K, Kusunoki Y, et al. High-dose-rate brachytherapy for small-sized peripherally located lung cancer. Strahlenther Onkol 2006;182:703–7.

    Article  PubMed  Google Scholar 

  19. Jeremic B, Classen J, Bamberg M. Radiotherapy alone in technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2002;54:119–30.

    PubMed  Google Scholar 

  20. Krol AD, Aussems P, Noordijk EM, et al. Local irradiation alone for peripheral stage I lung cancer: could we omit the elective regional nodal irradiation? Int J Radiat Oncol Biol Phys 1996;34:297–302.

    PubMed  CAS  Google Scholar 

  21. Lacquet LK. The present status of surgery for lung cancer. Acta Chir Belg 1996;96:245–51.

    PubMed  CAS  Google Scholar 

  22. Lagerwaard FJ, Haasbeek CJ, Smit EF, et al. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008;70:685–92.

    PubMed  Google Scholar 

  23. McGarry RC, Papiez L, Williams M, et al. Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 2005;63:1010–5.

    PubMed  Google Scholar 

  24. Nagata Y, Takayama K, Matsuo Y, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 2005;63:1427–31.

    Article  PubMed  Google Scholar 

  25. Ng AW, Tung SY, Wong VY. Hypofractionated stereotactic radiotherapy for medically inoperable stage I non-small cell lung cancer - report on clinical outcome and dose to critical organs. Radiother Oncol 2008;87:24–8.

    Article  PubMed  Google Scholar 

  26. Nieder C, Grosu AL, Andratschke NH, et al. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 2005;61:851–5.

    PubMed  Google Scholar 

  27. Nihei K, Ogino T, Ishikura S, et al. High-dose proton beam therapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006;65:107–11.

    PubMed  Google Scholar 

  28. Nyman J, Johansson KA, Hultén U. Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer - mature results for medically inoperable patients. Lung Cancer 2006;51:97–103.

    Article  PubMed  Google Scholar 

  29. Onimaru R, Shirato H, Shimizu S, et al. Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 2003;56:126–35.

    PubMed  Google Scholar 

  30. Onishi H, Kuriyama K, Komiyama T, et al. Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer 2004;45:45–55.

    Article  PubMed  Google Scholar 

  31. Peters N, Wieners G, Pech M, et al. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels. Strahlenther Onkol 2008;184:1–7.

    Article  Google Scholar 

  32. Qiao X, Tullgren O, Lax I, et al. The role of radiotherapy in treatment of stage I non-small-cell lung cancer. Lung Cancer 2003;41:1–11.

    Article  PubMed  Google Scholar 

  33. Robertson JM, Ten Haken RK, Hazuka MB, et al. Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 1997;37:1079–85.

    PubMed  CAS  Google Scholar 

  34. Schag CC, Heinrich RL, Ganz PA. Karnofsky performance status revisited: reliability, validity, and guidelines. J Clin Oncol 1984;2:187–93.

    PubMed  CAS  Google Scholar 

  35. Semrau S, Bier A, Thierbach U, et al. 6-year experience of concurrent radiochemotherapy with vinorelbine plus a platinum compound in multimorbid or aged patients with inoperable non-small cell lung cancer. Strahlenther Onkol 2007;183:30–5.

    Article  PubMed  Google Scholar 

  36. Sibley GS, Jamieson TA, Marks LB, et al. Radiotherapy alone for medically inoperable stage I non-small-cell lung cancer: the Duke experience. Int J Radiat Oncol Biol Phys 1998;40:149–54.

    Article  PubMed  CAS  Google Scholar 

  37. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  38. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006;24:4833–9.

    Article  PubMed  Google Scholar 

  39. Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 2003;124:1946–55.

    Article  PubMed  Google Scholar 

  40. Trotti A, Byhardt R, Stetz J, et al. Common toxicity criteria: version 2.0. an improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 2000;47:13–47.

    PubMed  CAS  Google Scholar 

  41. Uematsu M, Shioda A, Suda A, et al. Computed tomography guided frameless stereotactic radiotherapy for stage I non-small-cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 2001;51:666–70.

    PubMed  CAS  Google Scholar 

  42. Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients. Cancer 1998;82:1062–70.

    Article  PubMed  CAS  Google Scholar 

  43. Wulf J, Hädinger U, Oppitz U, et al. Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol 2001;177:645–55.

    Article  PubMed  CAS  Google Scholar 

  44. Wurstbauer K, Deutschmann H, Kopp P, et al. NSCLC: primary tumor size - radiation dose-related accelerated, twice daily radiotherapy by target splitting, preceded by 2 cycles of chemotherapy - first results of a prospective study. Strahlenther Onkol 2007;183:Spec No 2:38–40.

    Article  PubMed  Google Scholar 

  45. Zimmermann FB, Geinitz H, Schill S, et al. Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 2005;48:107–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, V., Kneschaurek, P. A Method for Improved Verification of Entire IMRT Plans by Film Dosimetry. Strahlenther Onkol 185, 34–40 (2009). https://doi.org/10.1007/s00066-009-1879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1879-x

Key Words:

Schlüsselwörter:

Navigation