Skip to main content

Advertisement

Log in

Efficacy of a Triple Treatment with Irradiation, Agonistic TRAIL Receptor Antibodies and EGFR Blockade

Effektivität einer Dreifachkombinationstherapie bestehend aus Bestrahlung, TRAIL-Rezeptor-Antikörpern und EGFR-Blockade

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Since the efficacy of a single targeted agent in combination with ionizing radiation is limited by putative treatment resistances, a rationally designed triple treatment consisting of an agonistic antibody targeting either TRAIL-R1 (mapatumumab) or TRAIL-R2 (lexatumumab), radiation and an epidermal growth factor receptor-(EGFR-)inhibiting antibody (cetuximab) was tested.

Material and Methods:

Induction of apoptosis after triple treatment was determined in Colo205, HCT116 and FaDu cells by Hoechst 33342 stain. The degree of interaction was determined by isobologram analysis. A knockout variant of HCT116 was used to examine Bax dependence of the triple treatment. The role of Akt/PKB signaling was analyzed using the phosphatidylinositol 3-kinase inhibitor LY294002. Clonogenic assays were performed to examine the effect on clonogenic survival of tumor cells.

Results:

A synergistic effect of radiation, cetuximab and agonistic TRAIL-R antibodies was demonstrated in cell lines derived from colorectal tumors or head-and-neck cancers. The efficacy of this multimodal approach was dependent on Bax and inhibition of Akt/PKB in the cell systems used. The results also show a positive impact on clonogenic cell death in several cell lines.

Conclusion:

These data suggest that rationally designed multimodal therapy approaches integrating radiation with more than one targeted agent will open new perspectives in radiation oncology.

Hintergrund und Ziel:

Die Wirkung einer Kombination von singulären molekular gezielten Substanzen mit ionisierender Strahlung kann durch Behandlungsresistenzen limitiert sein. Daher wurde geprüft, ob eine molekular gezielte Dreifachkombination, bestehend aus einem agonistischen Antikörper gegen entweder TRAIL-R1 (Mapatumumab) oder TRAIL-R2 (Lexatumumab) sowie einem Antikörper (Cetuximab) gegen den epidermalen Wachstumsfaktor-Rezeptor (EGFR), zur optimierten Tumorzellabtötung in vitro beitragen kann.

Material und Methodik:

Die Apoptoseinduktion nach Dreifachtherapie wurde in den Zelllinien Colo205, HCT116 und FaDu durch Hoechst-33342-Färbung bestimmt. Der Interaktionsgrad wurde mittels Isobologrammanalyse ermittelt. Eine Knock-out-Variante der Zelllinie HCT116 wurde verwendet, um die Bax-Abhängigkeit der Dreifachtherapie zu untersuchen. Die Rolle des Akt/PKB-Signalwegs wurde mit dem Phosphatidylinositol-3-Kinase-Inhibitor LY294002 analysiert. Koloniebildungstests wurden durchgeführt, um den Effekt auf das klonogene Überleben der Tumorzellen zu untersuchen.

Ergebnisse:

Ein synergistischer Effekt von Bestrahlung, Cetuximab und agonistischen TRAIL-R-Antikörpern ließ sich in Adeno- und Plattenepithelkarzinomzellsystemen nachweisen. Die Effektivität dieses multimodalen Ansatzes war abhängig von Bax und der Inhibierung von Akt/PKB. Parallel mit einer erhöhten Apoptoserate fand sich ein optimierte Eradikation klonogener Tumorzellen.

Schlussfolgerung:

Diese Daten deuten darauf hin, dass zielgerichtete multimodale Therapieansätze unter Einbeziehung mehrerer molekularer Zielstrukturen neue Perspektiven in der Radioonkologie eröffnen könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–62.

    Article  PubMed  CAS  Google Scholar 

  2. Attard G, Plummer R, de Bono JS, et al. Phase I and pharmacokinetic study of HGS-ETR2, a fully human agonistic monoclonal antibody to TRAIL-R2, in patients with advanced solid malignancies. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, Philadelphia, 14–18 November 2005.

  3. Baierlein SA, Distel L, Sieber R, et al. Combined effect of tumor necrosis factor-alpha and ionizing radiation on the induction of apoptosis in 5637 bladder carcinoma cells. Strahlenther Onkol 2006;182:467–72.

    Article  PubMed  Google Scholar 

  4. Baumann M, Krause M, Dikomey E, et al. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 2007;83:238–48.

    Article  PubMed  CAS  Google Scholar 

  5. Belka C, Betsch A, Marini P, et al. Death inducing ligands in combination with ionizing radiation: objective and current knowledge. Strahlenther Onkol 2003;179:141–51.

    Article  PubMed  Google Scholar 

  6. Belka C, Budach W. Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 2002;78:643–58.

    Article  PubMed  CAS  Google Scholar 

  7. Belka C, Schmid B, Marini P, et al. Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 2001;20:2190–6.

    Article  PubMed  CAS  Google Scholar 

  8. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354: 567–78.

    Article  PubMed  CAS  Google Scholar 

  9. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999;59:1391–9.

    PubMed  CAS  Google Scholar 

  10. Burdak-Rothkamm S, Rube CE, Nguyen TP, et al. Radiosensitivity of tumor cell lines after pretreatment with the EGFR tyrosine kinase inhibitor ZD1839 (Iressa). Strahlenther Onkol 2005;181:197–204.

    Article  PubMed  Google Scholar 

  11. Capalbo G, Rodel C, Stauber RH, et al. The role of survivin for radiation therapy. Prognostic and predictive factor and therapeutic target. Strahlenther Onkol 2007;183:593–9.

    Article  PubMed  Google Scholar 

  12. Cengel KA, McKenna WG. Molecular targets for altering radiosensitivity: lessons from Ras as a pre-clinical and clinical model. Crit Rev Oncol Hematol 2005;55:103–16.

    Article  PubMed  Google Scholar 

  13. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337–45.

    Article  PubMed  CAS  Google Scholar 

  14. Daniel PT, Schulze-Osthoff K, Belka C, et al. Guardians of cell death: the Bcl-2 family proteins. Essays Biochem 2003;39:73–88.

    PubMed  CAS  Google Scholar 

  15. Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005;280:31182–9.

    Article  PubMed  CAS  Google Scholar 

  16. Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (cetuximab) suppresses DNA-PK activity. Radiother Oncol 2005;76:157–61.

    Article  PubMed  CAS  Google Scholar 

  17. Ganswindt U, Budach W, Jendrossek V, et al. Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer - a phase I study. Radiat Oncol 2006;1:9.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson EM, Henson ES, Haney N, et al. Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release. Cancer Res 2002;62:488–96.

    PubMed  CAS  Google Scholar 

  19. Gupta AK, Cerniglia GJ, Mick R, et al. HIV protease inhibitors block Akt signaling and radiosensitize tumor cells both in vitro and in vivo. Cancer Res 2005;65:8256–65.

    Article  PubMed  CAS  Google Scholar 

  20. Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 2004;11:689–708.

    Article  PubMed  CAS  Google Scholar 

  21. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 1999;59:1935–40.

    PubMed  CAS  Google Scholar 

  22. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs 1999;17:259–69.

    Article  PubMed  CAS  Google Scholar 

  23. Kanzler S, Trarbach T, Heinemann V, et al. Results of a phase 2 trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed or refractory colorectal cancer (CRC). ECCO 13 — the European Cancer Conference, Paris, 30 October–3 November 2005.

  24. Komaki R, Liao Z, Milas L. Improvement strategies for molecular targeting: cyclooxygenase-2 inhibitors as radiosensitizers for non-small cell lung cancer. Semin Oncol 2004;31:47–53.

    Article  PubMed  CAS  Google Scholar 

  25. Krause M, Hessel F, Zips D, et al. Adjuvant inhibition of the epidermal growth factor receptor after fractionated irradiation of FaDu human squamous cell carcinoma. Radiother Oncol 2004;72:95–101.

    Article  PubMed  CAS  Google Scholar 

  26. Krause M, Prager J, Zhou X, et al. EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: differential response of cancer stem cells and nontumourigenic cells? Radiother Oncol 2007;83:316–25.

    Article  PubMed  CAS  Google Scholar 

  27. Krause M, Zips D, Thames HD, et al. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy. Radiother Oncol 2006;80:112–22.

    Article  PubMed  CAS  Google Scholar 

  28. Labianca R, La Verde N, Garassino MC. Development and clinical indications of cetuximab. Int J Biol Markers 2007;22 (1 Suppl 4):S40–6.

    PubMed  CAS  Google Scholar 

  29. Marini P, Denzinger S, Schiller D, et al. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 2006;25:5145–54.

    PubMed  CAS  Google Scholar 

  30. Marini P, Schmid A, Jendrossek V, et al. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer 2005;5:5.

    Article  PubMed  Google Scholar 

  31. Mitchell EP, Alberts SR, Schwartz MA, et al. High-dose bevacizumab in combination with FOLFOX4 improves survival in patients with previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200. 2005 ASCO Gastrointestinal Cancers Symposium, Miami, 27–29 January 2005.

  32. Mitsiades CS, Mitsiades N, Koutsilieris M. The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 2004;4:235–56.

    Article  PubMed  CAS  Google Scholar 

  33. Niyazi M, Belka C. Isobologram analysis of triple therapies. Radiat Oncol 2006;1:39.

    Article  PubMed  Google Scholar 

  34. Niyazi M, Niyazi I, Belka C. Counting colonies of clonogenic assays by using densitometric software. Radiat Oncol 2007;2:4.

    Article  PubMed  Google Scholar 

  35. Pajonk F, Pajonk K, McBride WH. Inhibition of NF-kappaB, clonogenicity, and radiosensitivity of human cancer cells. J Natl Cancer Inst 1999;91:1956–60.

    Article  PubMed  CAS  Google Scholar 

  36. Park SY, Seol DW. Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 2002;295:515–8.

    Article  PubMed  CAS  Google Scholar 

  37. Pitti RM, Marsters SA, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687–90.

    Article  PubMed  CAS  Google Scholar 

  38. Rodel C, Sauer R. Integration of novel agents into combined-modality treatment for rectal cancer patients. Strahlenther Onkol 2007;183:227–35.

    Article  PubMed  Google Scholar 

  39. Rubel A, Handrick R, Lindner LH, et al. The membrane targeted apoptosis modulators erucylphosphocholine and erucylphosphohomocholine increase the radiation response of human glioblastoma cell lines in vitro. Radiat Oncol 2006;1:6.

    Article  PubMed  Google Scholar 

  40. Rudner J, Jendrossek V, Lauber K, et al. Type I and type II reactions in TRAIL-induced apoptosis - results from dose-response studies. Oncogene 2005;24:130–40.

    Article  PubMed  CAS  Google Scholar 

  41. Schutze C, Dorfler A, Eicheler W, et al. Combination of EGFR/HER2 tyrosine kinase inhibition by BIBW 2992 and BIBW 2669 with irradiation in FaDu human squamous cell carcinoma. Strahlenther Onkol 2007;183:256–64.

    Article  PubMed  Google Scholar 

  42. Teraishi F, Kagawa S, Watanabe T, et al. ZD1839 (Gefitinib, “Iressa”), an epidermal growth factor receptor-tyrosine kinase inhibitor, enhances the anti-cancer effects of TRAIL in human esophageal squamous cell carcinoma. FEBS Lett 2005;579:4069–75.

    Article  PubMed  CAS  Google Scholar 

  43. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157–63.

    Article  PubMed  CAS  Google Scholar 

  44. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–30.

    Article  PubMed  CAS  Google Scholar 

  45. Weiss C, Rodel F, Ott O, et al. Pretreatment proliferation and local control in bladder cancer after radiotherapy with or without concurrent chemotherapy. Strahlenther Onkol 2007;183:552–6.

    Article  PubMed  Google Scholar 

  46. Wendt J, Haefen C von, Hemmati P, et al. TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 2005;24:4052–64.

    PubMed  CAS  Google Scholar 

  47. Zhang L, Yu J, Park BH, et al. Role of BAX in the apoptotic response to anticancer agents. Science 2000;290:989–92.

    Article  PubMed  CAS  Google Scholar 

  48. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000;60:1541–5.

    PubMed  CAS  Google Scholar 

  49. Zhu Z. Targeted cancer therapies based on antibodies directed against epidermal growth factor receptor: status and perspectives. Acta Pharmacol Sin 2007;28:1476–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Belka.

Additional information

*Both authors contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niyazi, M., Marini, P., Daniel, P.T. et al. Efficacy of a Triple Treatment with Irradiation, Agonistic TRAIL Receptor Antibodies and EGFR Blockade. Strahlenther Onkol 185, 8–18 (2009). https://doi.org/10.1007/s00066-009-1856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1856-4

Key Words:

Schlüsselwörter:

Navigation