Skip to main content
Log in

Roboterassistierte Implantation von Pedikelschrauben

Robot-assisted pedicle screw placement

  • Operative Techniken
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Zusammenfassung

Operationsziel

Dorsale Instrumentierung der Wirbelsäule mit Pedikelschrauben.

Indikationen

Instabilität der Wirbelsäule durch Trauma, Infektion, Degeneration oder Tumor.

Kontraindikationen

Keine.

Operationstechnik

Navigierte und roboterassistierte Schraubenimplantation ermöglicht eine optimale Platzierung von Pedikelschrauben.

Weiterbehandlung

Frühfunktionelle Mobilisation ab dem ersten postoperativen Tag.

Ergebnisse

Eine Studie von Lee et al. analysierte den Einsatz des Systems Mazor X Stealth Edition (Medtronic Navigation, Louisville, CO, USA; Medtronic Spine, Memphis, TN, USA) in 186 Fällen mit insgesamt 1445 Pedikelschrauben [1]. Eine bildgebend korrekte Schraubenlage zeigte sich in 1432 (99,1 %) der Pedikelschrauben, 6 Pedikelschrauben (0,4 %) wurden intraoperativ revidiert. Die mittlere Dauer der Schraubenanlage betrug 6,1 ± 2,3 min. Pojskić et al. publizierten eine Fallserie zum Einsatz des Systems Cirq (Brainlab, München, Deutschland) mit 13 Fällen und Implantation von insgesamt 70 Pedikelschrauben [2]. Intraoperative Bildgebung zeigte eine Schraubenlage gemäß Gertzbein-Robbins-Klassifikation (GR) Kategorie A in 65 Schrauben (92,9 %) und GR B in 1 Schraube (1,4 %). Eine Schraubenlage GR D mit intraoperativer Revision zeigte sich in 2 Fällen (2,9 %). Die mittlere Dauer der Schraubenanlage betrug 08:27 ± 06:54 min.

Abstract

Objective

Pedicle screw-based posterior instrumentation of the spine.

Indications

Instability of the spine due to trauma, infection, degenerative spinal disease or tumor.

Contraindications

None.

Surgical technique

Robot-assisted navigated pedicle screw placement.

Postoperative management

Early functional mobilization starting on the first postoperative day.

Results

A study by Lee et al. analyzed the clinical application of the system Mazor X Stealth Edition (Medtronic Navigation, Louisville, CO, USA; Medtronic Spine, Memphis, TN, USA) in 186 cases with a total of 1445 pedicle screws [1]. Correct screw positioning was achieved in 1432 pedicle screws (99.1%); six pedicle screws (0.4%) were revised intraoperatively. The mean duration of pedicle screw placement was 6.1 ± 2.3 min. Pojskić et al. published a case series regarding the application of the system Cirq (Brainlab, Munich, Germany) in 13 cases with a total number of 70 pedicle screws implanted [2]. Intraoperative imaging showed screw positioning according to the Gertzbein Robbins classification (GR) category A in 65 screws (92.9%) and GR B in one screw (1.4%). Screw positioning GR D with intraoperative revision was reported in two screws (2.9%). Mean duration of pedicle screw placement was 08:27 ± 06:54 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Lee NJ, Zuckerman SL, Buchanan IA, Boddapati V, Mathew J, Leung E, Park PJ, Pham MH, Buchholz AL, Khan A, Pollina J, Mullin JP, Jazini E, Haines C, Schuler TC, Good CR, Lombardi JM, Lehman RA (2021) Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2,800 screws and 372 patients. Spine J 21:1504–1512. https://doi.org/10.1016/j.spinee.2021.05.015

    Article  Google Scholar 

  2. Pojskic M, Bopp M, Nimsky C, Carl B, Sabeta B (2021) Initial intraoperative experience with robotic-assisted pedicle screw placement with Cirq((R)) robotic alignment: an evaluation of the first 70 screws. J Clin Med. https://doi.org/10.3390/jcm10245725

    Article  Google Scholar 

  3. Ille S, Baumgart L, Obermueller T, Meyer B, Krieg SM (2021) Clinical efficiency of operating room-based sliding gantry CT as compared to mobile cone-beam CT-based navigated pedicle screw placement in 853 patients and 6733 screws. Eur Spine J 30:3720–3730. https://doi.org/10.1007/s00586-021-06981-3

    Article  Google Scholar 

  4. Naik A, Smith AD, Shaffer A, Krist DT, Moawad CM, MacInnis BR, Teal K, Hassaneen W, Arnold PM (2022) Evaluating robotic pedicle screw placement against conventional modalities: a systematic review and network meta-analysis. Neurosurg Focus. https://doi.org/10.3171/2021.10.FOCUS21509

    Article  Google Scholar 

  5. Meng XT, Guan XF, Zhang HL, He SS (2016) Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis. Neurosurg Rev 39:385–391. https://doi.org/10.1007/s10143-015-0679-2

    Article  Google Scholar 

  6. Shin BJ, James AR, Njoku IU, Hartl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122. https://doi.org/10.3171/2012.5.SPINE11399

    Article  Google Scholar 

  7. Villard J, Ryang YM, Demetriades AK, Reinke A, Behr M, Preuss A, Meyer B, Ringel F (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine (Phila Pa 1976) 39:1004–1009. https://doi.org/10.1097/BRS.0000000000000351

    Article  Google Scholar 

  8. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, Sackerer D, Alexandrovsky V, Stuer C, Burger R, Maeurer J, Donald GD, Schoenmayr R, Friedlander A, Knoller N, Schmieder K, Pechlivanis I, Kim IS, Meyer B, Shoham M (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35:2109–2115. https://doi.org/10.1097/BRS.0b013e3181d323ab

    Article  Google Scholar 

  9. Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37:E496–E501. https://doi.org/10.1097/BRS.0b013e31824b7767

    Article  Google Scholar 

  10. Ryang YM, Villard J, Obermuller T, Friedrich B, Wolf P, Gempt J, Ringel F, Meyer B (2015) Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine J 15:467–476. https://doi.org/10.1016/j.spinee.2014.10.003

    Article  Google Scholar 

  11. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14. https://doi.org/10.1097/00007632-199001000-00004

    Article  CAS  Google Scholar 

  12. Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2017) Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976) 42:353–358. https://doi.org/10.1097/BRS.0000000000001778

    Article  Google Scholar 

  13. O’Connor TE, O’Hehir MM, Khan A, Mao JZ, Levy LC, Mullin JP, Pollina J (2021) Mazor X Stealth robotic technology: a technical note. World Neurosurg 145:435–442. https://doi.org/10.1016/j.wneu.2020.10.010

    Article  Google Scholar 

  14. Jain D, Manning J, Lord E, Protopsaltis T, Kim Y, Buckland AJ, Bendo J, Fischer C, Goldstein J (2019) Initial single-institution experience with a novel robotic-navigation system for thoracolumbar pedicle screw and pelvic screw placement with 643 screws. Int J Spine Surg 13:459–463. https://doi.org/10.14444/6060

    Article  Google Scholar 

  15. Wallace DJ, Vardiman AB, Booher GA, Crawford NR, Riggleman JR, Greeley SL, Ledonio CG (2020) Navigated robotic assistance improves pedicle screw accuracy in minimally invasive surgery of the lumbosacral spine: 600 pedicle screws in a single institution. Int J Med Robot 16:e2054. https://doi.org/10.1002/rcs.2054

    Article  Google Scholar 

  16. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J (2016) Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 25:947–955. https://doi.org/10.1007/s00586-015-3758-8

    Article  Google Scholar 

  17. Chenin L, Capel C, Fichten A, Peltier J, Lefranc M (2017) Evaluation of screw placement accuracy in circumferential lumbar arthrodesis using robotic assistance and intraoperative flat-panel computed tomography. World Neurosurg 105:86–94. https://doi.org/10.1016/j.wneu.2017.05.118

    Article  Google Scholar 

  18. Ravi B, Zahrai A, Rampersaud R (2011) Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine (Phila Pa 1976) 36:84–91. https://doi.org/10.1097/BRS.0b013e3181cbfd09

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro M. Krieg.

Ethics declarations

Interessenkonflikt

B. Meyer und S.M. Krieg sind Berater für die Brainlab AG. B. Meyer erhält Beraterentgelte und Lizenzgebühren von Medacta International SA; erhält Honorare, Beraterentgelte und Forschungsmittel von Medtronic GmbH, Icotec AG und Relievant Medsystems Inc.; erhält Honorare und Forschungsmittel von Ulrich Medical GmbH; erhält Honorare und Beratungsentgelte von Spineart Deutschland GmbH und DePuy Synthes (Johnson&Johnson Medical GmbH) und erhält Lizenzgebühren von Spineart Deutschland GmbH. S.M. Krieg ist Berater für Ulrich Medical GmbH und erhält Honorare von Nexstim Plc, Spineart Deutschland GmbH, Medtronic GmbH, Carl Zeiss Meditec AG und DePuy Synthes (Johnson&Johnson Medical GmbH). M. Schwendner gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Editor

Ralph Kothe, Hamburg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwendner, M., Meyer, B. & Krieg, S.M. Roboterassistierte Implantation von Pedikelschrauben. Oper Orthop Traumatol 35, 37–42 (2023). https://doi.org/10.1007/s00064-022-00792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-022-00792-5

Schlüsselwörter

Keywords

Navigation