Skip to main content
Log in

Adäquate Volumensubstitution bei septischem Schock unter hohen Katecholamindosen

Adequate fluid resuscitation in septic shock with high catecholamine doses

  • Originalien
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Beim septischen Schock sollten vasokonstriktorische und positiv inotrope Substanzen möglichst erst dann eingesetzt werden, wenn sich Blutdruck und Organperfusion trotz Vorlastoptimierung nicht adäquat verbessern lassen. Der zunehmende Einsatz des hämodynamischen Monitorings hat gezeigt, dass in einigen Fällen bei initial unzureichender Volumensubstitution hoch dosierte Katecholamine Verwendung finden. Ziel der Studie ist zu zeigen, dass es in einigen Fällen möglich ist, durch eine dem Bedarf entsprechende Volumensubstitution verbunden mit einer gezielten Reduktion der Katecholamindosis deren Bedarf zu reduzieren.

Material und Methoden

In einer retrospektiven Beobachtungsstudie wurden 29 Patienten einer chirurgischen Intensivstation (17 männlich, 12 weiblich; mittleres Alter ± Standardfehler: 71 ± 10 Jahre) mit septischem Schock analysiert, die hoch dosiert Katecholamine erhielten (Noradrenalin 0,204; Dobutamin 3,876; Adrenalin 0,025 µg/kgKG/min im Median; bis zu 0,810/22,222/0,407 µg/kgKG/min; 28/20/17 Patienten). Die Extremitäten waren initial bei allen Patienten kühl und marmoriert, während der mittlere arterielle Druck ≥ 65 mmHg war. Der mediane zentrale Venendruck betrug 17 mmHg (5–34 mmHg), der Laktatspiegel 2,78 mmol/l (0,93–10,67 mmol/l). Das Standardtherapiekonzept umfasste eine forcierte, dem Bedarf entsprechende Volumensubstitution, kombiniert mit einer aktiven Reduktion vasokonstriktorischer und positiv inotroper Substanzen, deren Ausmaß mithilfe eines Autotransfusionsmanövers, klinischer Zeichen und in 19 Fällen mithilfe eines hämodynamischen Monitorings gesteuert wurde (Pulmonaliskatheter, Vigilance II: n = 10; FloTrac, Vigileo: n = 9, davon PreSpep: n = 5, Edwards Lifesciences). Der Volumenbelastungstest wurde bei Wiedererwärmung der Extremitäten, ansteigenden Diuresemengen und fehlender Reaktion auf das Autotransfusionsmanöver beendet.

Ergebnisse

Die mittlere Katecholamindosis ließ sich bei allen Patienten signifikant reduzieren: Noradrenalin 0, Dobutamin 1,852, Adrenalin 0 µg/kgKG/min (bis zu 0,133/6,289/0,091 µg/kgKG/min; p < 0,05, Wilcoxon-Vorzeichenrangsummentest). Volumenbelastungstest: + 4.500 ml Ringer-Lösung (0–24.000 ml) und + 1.000 ml Hydroxyethylstärke (0–2.500 ml); mittlere Bilanz + 6.465 ml (2.040–27.255 ml); mittlere Weaning-Zeit von den Katecholaminen 12 h (4–43 h). Alle Patienten hatten anschließend wieder erwärmte Extremitäten. Die Laktatspiegel fielen auf 2,05 mmol/l (0,7–5,4 mmol/l). Die messbaren hämodynamischen Veränderungen differierten interindividuell deutlich, es trat jedoch keine kardiale Dekompensation auf. Der paO2/FiO2 veränderte sich nichtsignifikant von 264 mmHg (75–418 mmHg) auf 250 mmHg (120–467 mmHg; Median, Bereich). 20 Patienten überlebten, 9 verstarben.

Schlussfolgerungen

Bei einem nicht unerheblichen Anteil septischer Schockpatienten, die mit hoch dosierten Katecholaminen behandelt werden, ist es möglich, diese in Kombination mit einem bedarfsadaptierten, forcierten Volumenbelastungstest zu reduzieren. Die Bedeutung einer adäquaten dem Bedarf entsprechenden Volumensubstitution vor dem Einsatz hoch dosierter Katecholamine wird durch unsere Ergebnisse bestätigt. Sie sollte sich an klinischen und wenn möglich hämodynamischen Parametern orientieren und nicht unterschätzt werden.

Abstract

Background

Appropriate fluid resuscitation is a fundamental aspect for the hemodynamic management of septic shock patients and should ideally be achieved before vasopressors and positive inotropic substances are administered. The development of hemodynamic monitoring has revealed that in some cases patients had been improperly treated with high-dose catecholamines for initially insufficient fluid resuscitation. The aim of this study was to show that in some cases it is possible to actively reduce catecholamines by a volume challenge adapted according to the individual patient needs.

Material and methods

In this retrospective observational study 29 patients with septic shock in a surgical intensive care unit (ICU) at a university hospital (17 male, 12 female, mean age 71 ± 10 years) on high-dose catecholamines (median values norepinephrine 0.204 µg/kg body weight/min, dobutamine 3.876 µg/kg/min and epinephrine 0.025 µg/kg/min, ranging up to 0.810 µg/kg/min, 22.222 µg/kg/min and 0.407 µg/kg/min in 28, 20 and 17 patients, respectively) were analyzed. The extremities of the patients were initially cold with a mottled marbled appearance whereas the mean arterial pressure (MAP) was ≥ 65 mmHg. The median central venous pressure (CVP) was 17 mmHg (range 55–34 mmHg) and the mean lactate concentration was 2.78 mmol/l (range 0.93–10.67 mmol/l). The standard therapy concept consisted of a forced volume challenge combined with active reduction of catecholamines to achieve an adequate fluid loading status, guided by the passive leg raising test (PLR), clinical signs and in 19 cases by hemodynamic monitoring (pulmonary artery catheter Vigilance II n = 10, FloTrac, Vigileo n = 9 and PreSep n = 5; Edwards Life Sciences). The forced volume challenge was stopped after clinical improvement with rewarmed extremities, increasing diuresis volumes and lack of improvement by PLR.

Results

Catecholamine doses could be significantly reduced in all patients: norepinephrine to 0 µg/kg/min, dobutamine to 1.852 µg/kg/min and epinephrine to 0 µg/kg/min (up to 0.133 µg/kg/min, 6.289 µg/kg/min and 0.091 µg/kg/min, respectively, p < 0.05 Wilcoxon signed rank test). Volume challenge test: + 4,500 ml Ringer solution (range 0–24,000 ml) and 1,000 ml hydroxyethyl starch (range 0–2,500 ml) and mean fluid balance + 6,465 ml (range + 2,040 ml to + 27,255 ml). The median weaning time from catecholamines was 12 h (range 4–43 h). After treatment all patients showed rewarmed extremities and a decrease in mean lactate levels from 2.78 mmol/l (range 0.93–10.67 mmol/l) to 2.05 mmol/l (range 0.7–5.4 mmol/l). The measured hemodynamic constellations showed clear interindividual differences but no cardiac deterioration occurred. The median oxygenation index (paO2/FiO2) showed a statistically insignificant change from 264 mmHg (range 75–418 mmHg) to 250 mmHg (range 120–467 mmHg). Of the patients 20 survived and 9 died.

Conclusion

It is possible to wean a substantial proportion of septic shock patients from high-dose catecholamines in combination with a needs-adapted forced volume challenge test. The importance of appropriate fluid loading prior to the use of high catecholamine doses should be a main subject of discussion in patients with severe septic shock and was confirmed in this study. This should be oriented to clinical and if possible, hemodynamic parameters and should not be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Wood KA, Angus DC (2004) Pharmacoeconomic implications of new therapies in sepsis. Pharmacoeconomics 22(14):895–906

    Article  PubMed  Google Scholar 

  2. Weycker D, Akhras KS, Edelsberg J, Angus DC, Oster G (2003) Long-term mortality and medical care charges in patients with severe sepsis. Crit Care Med 31(9):2316–2323

    Article  PubMed  Google Scholar 

  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310

    Article  CAS  PubMed  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348(16):1546–1554

    Article  PubMed  Google Scholar 

  5. Hagel S, Brunkhorst F (2011) Sepsis. Intensivmed 48:57–73

    Article  Google Scholar 

  6. Brunkhorst F, Engel C, Reinhart K et al (2005) Epidemiology of severe sepsis and septic shock in Germany – results from the German „Prevalence“ Study. Crit Care 9(Suppl 1):S83

    Google Scholar 

  7. Adams HA, Bauer M, Gänsslen A et al (2005) Septischer Schock. Zur Diagnostik und Therapie der Schockformen. Empfehlungen der Interdisziplinären Arbeitsgruppe Schock der DIVI – Teil V. Anästh Intensivmed 46:285–295

    Google Scholar 

  8. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369 (9): 840-851

    Article  CAS  PubMed  Google Scholar 

  9. Reinhart K, Brunkhorst FM, Bone HG et al (2006) Diagnose und Therapie der Sepsis S-2 Leitlinien der Deutschen Sepsis-Gesellschaft e. V. und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin. Med Welt 57(1):23–36

    Google Scholar 

  10. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36(1):296–327

    Article  PubMed  Google Scholar 

  11. Sakr Y, Dubois MJ, De BD, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32(9):1825–1831

    Article  PubMed  Google Scholar 

  12. Den Uil CA, Klijn E, Lagrand WK et al (2008) The microcirculation in health and critical disease. Prog Cardiovasc Dis 51(2):161–170

    Article  PubMed  Google Scholar 

  13. Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE (2004) Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med 32(11 Suppl):S455–S465

    Article  PubMed  Google Scholar 

  14. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen HB, Corbett SW, Steele R et al (2007) Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 35(4):1105–1112

    Article  PubMed  Google Scholar 

  16. Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock. Crit Care Med 34(4):943–949

    Article  PubMed  Google Scholar 

  17. Trzeciak S, Dellinger RP, Abate NL et al (2006) Translating research to clinical practice: a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest 129(2):225–232

    Article  PubMed  Google Scholar 

  18. The ProCESS Investigators (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370(18):1683–1693

    Article  PubMed Central  Google Scholar 

  19. Peake SL, Delaney A, Bailey M et al (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371(16):1496–1506

    Article  CAS  PubMed  Google Scholar 

  20. Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372:1301–1311

    Article  CAS  PubMed  Google Scholar 

  21. Saugel B, Trepte CJ, Heckel K, Wagner JY, Reuter DA (2015) Hemodynamic management of septic shock: is it time for ‚individual goal-directed hemodynamic therapy‘ and for specifically targeting the microcirculation? Shock 43:522–529

    Article  CAS  PubMed  Google Scholar 

  22. Hollenberg SM (2007) Vasopressor support in septic shock. Chest 132(5):1678–1687

    Article  CAS  PubMed  Google Scholar 

  23. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637

    Article  PubMed  Google Scholar 

  24. Subramanian S, Yilmaz M, Rehman A, Hubmayr RD, Afessa B, Gajic O (2008) Liberal vs. conservative vasopressor use to maintain mean arterial blood pressure during resuscitation of septic shock: an observational study. Intensive Care Med 34(1):157–162

    Article  PubMed  Google Scholar 

  25. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34(1):17–60

    Article  PubMed  Google Scholar 

  26. Martin C (1999) Why, when and how I use Norepinephrine in the treatment of septic shock. In: Vincent JL (Hrsg) Yearbook of intensive care and emergency medicine 1999. Springer-Verlag, Berlin, S 175–188

  27. Rhodes A, Bennett ED (2004) Early goal-directed therapy: an evidence-based review. Crit Care Med 32(11 Suppl):S448–S450

    Article  PubMed  Google Scholar 

  28. Rudis MI, Basha MA, Zarowitz BJ (1996) Is it time to reposition vasopressors and inotropes in sepsis? Crit Care Med 24(3):525–537

    Article  CAS  PubMed  Google Scholar 

  29. Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S-2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e. V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI)). Ger Med Sci 8:1–86

    Google Scholar 

  30. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33(4):780–786

    Article  CAS  PubMed  Google Scholar 

  31. Ledoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28(8):2729–2732

    Article  CAS  PubMed  Google Scholar 

  32. Rivers EP, Kruse JA, Jacobsen G et al (2007) The influence of early hemodynamic optimization on biomarker patterns of severe sepsis and septic shock. Crit Care Med 35(9):2016–2024

    Article  PubMed  Google Scholar 

  33. Ledoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28(8):2729–2732

    Article  CAS  PubMed  Google Scholar 

  34. Singer M (2007) Catecholamine treatment for shock—equally good or bad? Lancet 370(9588):636–637

    Article  PubMed  Google Scholar 

  35. Schmittinger CA, Torgersen C, Luckner G, Schroder DC, Lorenz I, Dunser MW (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38(6):950–958

    Article  CAS  PubMed  Google Scholar 

  36. Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24(5):293–316

    Article  PubMed  Google Scholar 

  37. European Medicines Agency (EMA) (2013) Hydroxyethyl-starch solutions (HES) no longer to be used in patients with sepsis or burn injuries or in critically ill patients. HES will be available in restricted patient populations. EMA/809470/2013. 19. Dezember 2013

  38. Muckart DJ, Bhagwanjee S (1997) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med 25(11):1789–1795

    Article  CAS  PubMed  Google Scholar 

  39. Calandra T, Cohen J (2005) The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med 33(7):1538–1548

    Article  PubMed  Google Scholar 

  40. Monnet X, Rienzo M, Osman D et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34(5):1402–1407

    Article  PubMed  Google Scholar 

  41. Monnet X, Teboul JL (2008) Passive leg raising. Intensive Care Med 34(4):659–663

    Article  PubMed  Google Scholar 

  42. Starling EH, Visscher MB (1927) The regulation of the energy output of the heart. J Physiol 62(3):243–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Backer D (2006) Can passive leg raising be used to guide fluid administration? Crit Care 10(6):170

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171(2):221–226

    Article  CAS  PubMed  Google Scholar 

  45. Wilhelm J, Hettwer S, Schuermann M et al (2013) Severity of cardiac impairment in the early stage of community-acquired sepsis determines worse prognosis. Clin Res Cardiol 102(10):735–744

    Article  CAS  PubMed  Google Scholar 

  46. Vincent JL (2007) Shock. In: Kuhlen R, Moreno R, Rhodes A (Hrsg) 25 years of progress and innovation in intensive care medicine. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin, S 261–267

  47. Durairaj L, Schmidt GA (2008) Fluid therapy in resuscitated sepsis: less is more. Chest 133(1):252–263

    Article  PubMed  Google Scholar 

  48. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637

    Article  PubMed  Google Scholar 

  49. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166(1):98–104

    Article  PubMed  Google Scholar 

  50. De Backer D, Creteur J, Dubois MJ et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34(2):403–408

    Article  PubMed  Google Scholar 

  51. Shoemaker WC (1995) Diagnosis and treatment of the shock syndromes. In: Shoemaker WC, Ayres SM, Grenvik A, Holbrook PR (Hrsg) Textbook of critical care. W.B. Saunders Company, Philadelphia, S 85–102

    Google Scholar 

  52. Dubniks M, Persson J, Grande PO (2007) Effect of blood pressure on plasma volume loss in the rat under increased permeability. Intensive Care Med 33(12):2192–2198

    Article  PubMed  Google Scholar 

  53. Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24(5):293–316

    Article  PubMed  Google Scholar 

  54. Schmittinger CA, Torgersen C, Luckner G, Schroder DC, Lorenz I, Dunser MW (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38(6):950–958

    Article  CAS  PubMed  Google Scholar 

  55. Dunser MW, Ruokonen E, Pettila V et al (2009) Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care 13(6):R181

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dunser MW, Takala J, Ulmer H et al (2009) Arterial blood pressure during early sepsis and outcome. Intensive Care Med 35(7):1225–1233

    Article  PubMed  Google Scholar 

  57. Dellinger RP, Carlet JM, Masur H et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32(3):858–873

    Article  PubMed  Google Scholar 

  58. Dellinger RP, Vincent JL (2005) The Surviving Sepsis Campaign sepsis change bundles and clinical practice. Crit Care 9(6):653–654

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637

    Article  PubMed  Google Scholar 

  60. Nguyen HB, Corbett SW, Steele R et al (2007) Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 35(4):1105–1112

    Article  PubMed  Google Scholar 

  61. De Laet IE, De Waele JJ, Malbrain MLNG (2008) Fluid resuscitation and intra-abdominal hypertension. In: Vincent JL (Hrsg) Yearbook of intensive care and emergency medicine 2008. Springer, Berlin, S 536–548

    Chapter  Google Scholar 

  62. Rhodes A, Bennett ED (2004) Early goal-directed therapy: an evidence-based review. Crit Care Med 32(11 Suppl):S448–S450

    Article  PubMed  Google Scholar 

  63. Rivers EP (2006) Early goal-directed therapy in severe sepsis and septic shock: converting science to reality. Chest 129(2):217–218

    Article  PubMed  Google Scholar 

  64. Trzeciak S, McCoy JV, Phillip DR et al (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34(12):2210–2217

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rhodes A, Cecconi M, Hamilton M et al (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36(8):1327–1332

    Article  PubMed  Google Scholar 

  66. Ait-Oufella H, Lemoinne S, Boelle PY et al (2011) Mottling score predicts survival in septic shock. Intensive Care Med 37(5):801–807

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.C. Lewejohann.

Ethics declarations

Interessenkonflikt

J.C. Lewejohann hat Vorträge bei Fortbildungsveranstaltungen über hämodynamisches Monitoring gehalten und dafür Honorare von der Fa. Edwards Lifesciences erhalten. H. Braasch, M. Hansen, C. Zimmermann, E. Muhl und T. Keck geben an, dass kein Interessenkonflikt besteht.

Die ethischen Richtlinien für Studien wurden eingehalten. Die Datenverarbeitung und -auswertung erfolgte ausschließlich sekundär anonymisiert. Das Vorhaben wurde bei der Ethikkommission der Universität Lübeck angezeigt (Aktenzeichen 12-035A) und eine Behandlung im normalen Antragsverfahren für nicht notwendig erachtet.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewejohann, J., Braasch, H., Hansen, M. et al. Adäquate Volumensubstitution bei septischem Schock unter hohen Katecholamindosen. Med Klin Intensivmed Notfmed 111, 514–524 (2016). https://doi.org/10.1007/s00063-015-0111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-015-0111-2

Schlüsselwörter

Keywords

Navigation