Skip to main content
Log in

Die Rolle der Thrombozyten bei Atherosklerose, Diabetes mellitus und chronischer Niereninsuffizienz

Ein Versuch, die Resultate der TREAT-Studie zu erklären

The Role of Platelets in Atherosclerosis, Diabetes Mellitus, and Chronic Kidney Disease. An Attempt at Explaining the TREAT Study Results

  • ÜBERSICHT
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

Erythropoesestimulierende Arzneimittel (ESA) werden zur Behandlung der renalen Anämie eingesetzt. Nachdem bei der TREAT-Studie (Trial to Reduce Cardiovascular Events with Aranesp Therapy) mit niereninsuffizienten Diabetikern die Apoplexinzidenz in der ESA-Gruppe signifikant höher war als in der Kontrollgruppe, stellt sich die Frage nach der Ursache für dieses Phänomen. Eine entscheidende Rolle dürfte hierbei den Blutplättchen zukommen. Bei der Atherogenese spielen sich komplexe Interaktionen zwischen Plättchen und Monozyten (Plättchen/Monozyten-„Crosstalk“) sowie Endothel ab. Hierbei sind insbesondere bei Diabetes mellitus die Plättchen aktiviert. Bei der Atherogenese sind andere Plättchenpartialfunktionen von Relevanz als jene, die der Cyclooxygenaseinhibitor Acetylsalicylsäure und Antagonisten des Adenosindiphosphatrezeptors P2Y12wie die Thienopyridine hemmen. Stattdessen sind für den Plättchen/Monozyten-„Crosstalk“ Adhäsionsrezeptoren wie Selectine und Integrine von Bedeutung. Zusätzlich bewirken ESA direkt und indirekt eine Plättchenaktivierung. Antagonistisch besteht hierzu bei schwerer chronischer Niereninsuffizienz infolge Thrombozytopathie eine renale Blutungsneigung, die durch adäquate Nierenersatztherapie und ESA-Gabe mit Erreichen eines Hämoglobins (Hb) von 10 g/dl beseitigt werden kann. Wird jedoch ein Hb von 10 g/dl überschritten, führt die noch stärkere ESA-bedingte Plättchenaktivierung zusammen mit der diabetisch verursachten zu einer prothrombotischen Situation, die bei Patienten mit ausgepägter Atherosklerose in akuten atherothrombotischen Komplikationen resultieren kann, für deren Zustandekommen die Plättchen von zentraler Bedeutung sind. Dies wäre eine Hypothese zur Erklärung für die erhöhte Apoplexinzidenz im Rahmen der TREAT-Studie.

Abstract

Erythropoiesis-stimulating agents (ESA) are used to treat renal anemia. The TREAT study (Trial to Reduce Cardiovascular Events with Aranesp Ther- apy) of diabetic patients with chronic kidney disease (CKD) found that the risk of stroke was significantly higher than in the control arm. This raises the question as to what causes this phenomenon. Platelets may play a crucial role in this context. Atherogenesis involves complex interactions between platelets and monocytes (platelet-monocyte crosstalk) and with endothelial cells. Platelets are activated in cases of diabetes mellitus, especially. During atherogenesis, partial functions of platelets other than those inhibited by aspirin, as a cyclooxygenase inhibitor, or by adenosine diphosphate receptor P2Y12antagonists, such as thienopyridines, are of relevance. During platelet-monocyte crosstalk, specifically, an important role is played by adhesion receptors such as selectins and integrins. In addition, ESA cause platelet activation by direct and indirect mechanisms. Antagonistic thereto is a renal bleeding tendency in cases of severe CKD, due to platelet dysfunction, which can be remedied with appropriate renal replacement therapy and administration of ESA in order to reach a hemoglobin (Hb) level of 10 g/dl. However, if the Hb level exceeds 10 g/dl, the even stronger platelet activation caused by ESA, combined with the activation caused by diabetes, leads to a prothrombotic state, which in patients with severe atherosclerosis can result in acute atherothrombotic complications, in the genesis of which platelets play a key role. This would be one hypothesis for explaining the increased incidence of strokes in the TREAT study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009;361:2019–32.

    Article  PubMed  Google Scholar 

  2. Drüeke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 2006;355:2071–84.

    Article  PubMed  Google Scholar 

  3. Mönckeberg JG. Über die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. Virchows Arch Pathol Anat 1903;171:141–67.

    Article  Google Scholar 

  4. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357:2482–94.

    Article  CAS  PubMed  Google Scholar 

  5. Virchow R. Phlogose und Thrombose im Gefäß-system. Gesammelte Abhandlungen zur wissenschaftlichen Medicin, Bd III. Frankfurt am Main: Meidinger Sohn, 1856:458–635.

    Google Scholar 

  6. Bizzozero J. Über einen neuen Formbestandteil des Blutes und dessen Rolle bei der Thrombose und Blutgerinnung. Arch Pathol Anat Physiol Klin Med 1882;90:261–332.

    Article  Google Scholar 

  7. Duguid JB. Pathogenesis of arteriosclerosis. Lancet 1949;II:925–7.

    Article  Google Scholar 

  8. Ross R, Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 1976;295:369–77, 420-5.

    CAS  PubMed  Google Scholar 

  9. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  10. Lindner A, Charra B, Sherrard DJ, et al. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 1974;290:697–701.

    Article  CAS  PubMed  Google Scholar 

  11. Schiffrin EL, Lipman MI, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007;116:85–97.

    Article  PubMed  Google Scholar 

  12. Weidtmann B, Schunkert H. Niereninsuffizienz und kardiovaskulare Erkrankungen. Internist (Berl) 2007;48:770–8.

    Article  CAS  Google Scholar 

  13. McEver RP. Role of selectins in leukocyte adhesion to platelets and endothelium. Ann N Y Acad Sci 1994;714:185–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ginsberg MH, Du X, O’Toole TE, et al. Platelet integrins. Thromb Haemost 1995;74:352–9.

    CAS  PubMed  Google Scholar 

  15. Frenette PS, Denis CV, Weiss L, et al. P-selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 2000;191:1413–22.

    Article  CAS  PubMed  Google Scholar 

  16. Wright SD, Weitz JI, Huang AJ, et al. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A 1988;85:7734–8.

    Article  CAS  PubMed  Google Scholar 

  17. Altieri DC, Bader R, Mannucci PM, et al. Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 1988;107:1893–900.

    Article  CAS  PubMed  Google Scholar 

  18. Shattil SJ. Function and regulation of the β3integrins in hemostasis and vascular biology. Thromb Haemost 1995;74:149–55.

    CAS  PubMed  Google Scholar 

  19. Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995;332:1553–9.

    Article  CAS  PubMed  Google Scholar 

  20. Simon DI, Chen Z, Xu H, et al. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000;192:193–204.

    Article  CAS  PubMed  Google Scholar 

  21. Santoso S, Sachs UJ, Kroll H, et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002;196:679–91.

    Article  CAS  PubMed  Google Scholar 

  22. Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 1996;97:1525–34.

    Article  CAS  PubMed  Google Scholar 

  23. Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997;95:2387–94.

    CAS  PubMed  Google Scholar 

  24. Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis. An update. Arterioscler Thromb Vasc Biol 2008;28:1897–908.

    Article  CAS  PubMed  Google Scholar 

  25. Pitsilos S, Hunt J, Mohler ER. Platelet factor 4 localization in carotid atherosclerosis plaques: correlation with clinical parameters. Thromb Haemost 2003;90:1112–20.

    CAS  PubMed  Google Scholar 

  26. Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction on endothelial cells. Nature 1998;391:591–4.

    Article  CAS  PubMed  Google Scholar 

  27. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J Cell Biol 2001;154:485–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gawaz M, Langer H, May AE. Platelets in inflammation and atherosclerosis. J Clin Invest 2005;115:3378–84.

    Article  CAS  PubMed  Google Scholar 

  29. Mustard JF, Packham MA. Platelets and diabetes mellitus. N Engl J Med 1977;297:1345–7.

    Article  CAS  PubMed  Google Scholar 

  30. Breddin HK, Krzywanek HJ, Althoff P, et al. Spontaneous platelet aggregation and coagulation parameters as risk factors for arterial occlusions in diabetics. Int Angiol 1986;5:181–95.

    CAS  PubMed  Google Scholar 

  31. Ostermann H, van de Loo J. Factors of the hemostatic system in diabetic patients. A survey of controlled studies. Haemostasis 1986;16:386–416.

    CAS  PubMed  Google Scholar 

  32. Tschoepe D, Roesen P, Kaufmann L, et al. Evidence for abnormal platelet glycoprotein expression in diabetes mellitus. Eur J Clin Invest 1990;20:166–70.

    CAS  PubMed  Google Scholar 

  33. Leurs PB, Stolk RP, Hamulyak K, et al. Tissue factor pathway inhibitor and other endothelium-dependent hemostatic factors in elderly individuals with normal or impaired glucose tolerance and type 2 diabetes. Diabetes Care 2002;25:1340–5.

    Article  CAS  PubMed  Google Scholar 

  34. Davi G, Catalano I, Averna M, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 1990;332:1769–74.

    Article  Google Scholar 

  35. Small M, Lowe GD, MacCuish AC, et al. Thrombin and plasmin activity in diabetes mellitus and their association with glycaemic control. Q J Med 1987;65:1025–31.

    CAS  PubMed  Google Scholar 

  36. Rosove MH, Frank HJ, Harwig SS. Plasma beta-thromboglobulin, platelet factor 4, fibrinopeptide A, and other hemostatic functions during improved, short-term glycemic control in diabetes mellitus. Diabetes Care 1984;7:174–9.

    Article  CAS  PubMed  Google Scholar 

  37. Shechter M, Bairey Merz CN, Paul-Labrador MJ, et al. Blood glucose and platelet-dependent thrombosis in patients with coronary artery disease. J Am Coll Cardiol 2000;35:300–7.

    Article  CAS  PubMed  Google Scholar 

  38. Schneider DJ. Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care 2009;32:525–7.

    Article  CAS  PubMed  Google Scholar 

  39. Cabeza N, Li Z, Schulz C, et al. Surface expression of collagen receptor Fc receptor-γ/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes 2004;53:2117–21.

    Article  CAS  PubMed  Google Scholar 

  40. Gawlowski T, Stratmann B, Stirban AO, et al. AGEs and methylglyoxal induce apoptosis and expression of Mac-1 on neutrophils resulting in plate-letneutrophil aggregation. Thromb Res 2007;121:117–26.

    Article  CAS  PubMed  Google Scholar 

  41. Gawlowski T, Stratmann B, Ruetter R, et al. Advanced glycation end products strongly activate platelets. Eur J Nutr 2009;48:475–81.

    Article  CAS  PubMed  Google Scholar 

  42. Stratmann B, Tschoepe D. Pathobiology and cell interactions of platelets in diabetes. Diab Vasc Dis Res 2005;2:16–23.

    Article  PubMed  Google Scholar 

  43. Maurin N. Niedrig dosierte Azetylsalizylsaure („Low-dose-ASA“). Wirkungsweise und eventuelle Indikationen. Med Welt 1986;37:1329–34.

    Google Scholar 

  44. Belch J, MacCuish A, Campbell I, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008;337:a1840.

    Article  PubMed  Google Scholar 

  45. Ogawa H, Nakayama M, Morimoto T, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes. JAMA 2008;300:2134–41.

    Article  CAS  PubMed  Google Scholar 

  46. Buse JB, Ginsberg HN, Bakris GL, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus. A scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2007;115:114–26.

    Article  PubMed  Google Scholar 

  47. Angiolillo DJ. Antiplatelet therapy in diabetes: efficacy and limitations of current treatment strategies and future directions. Diabetes Care 2009;32:531–40.

    Article  CAS  PubMed  Google Scholar 

  48. Siegel-Axel D, Langer H, Lindemann S, et al. Die Rolle von Thrombozyten bei Entzündungs- und Atheroskleroseprozessen. Med Klin (Munich) 2006;101:467–75.

    Article  CAS  Google Scholar 

  49. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy — I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81–106.

    Google Scholar 

  50. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:71–86.

    Article  Google Scholar 

  51. Patrono C, Garcia Rodriguez LA, Landolfi R, et al. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 2005;353:2373–83.

    Article  CAS  PubMed  Google Scholar 

  52. Maurin N. Azetylsalizylsäure als Thrombozyten-funktionshemmer in der Inneren Medizin. Med Welt 1998;49:424–30.

    Google Scholar 

  53. Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost 2004;30:579–89.

    Article  CAS  PubMed  Google Scholar 

  54. Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial 2006;19:317–22.

    PubMed  Google Scholar 

  55. Hörl WH. Thrombozytopathie und Blutungskomplikationen bei Urämie. Wien Klin Wochenschr 2006;118:134–50.

    Article  PubMed  CAS  Google Scholar 

  56. Maurin N. Die renale Blutungsneigung. Nieren Hochdruckkr 1994;23:622–6.

    Google Scholar 

  57. Duke WW. The relation of blood platelets to hemorrhagic disease: description of a method for determining the bleeding time and coagulation time and report of three cases of hemorrhagic disease relieved by transfusion. JAMA 1910;55:1185–92.

    Google Scholar 

  58. Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol 1961;7:42–50.

    Article  CAS  PubMed  Google Scholar 

  59. Hellem AJ. The adhesiveness of human blood platelets in vitro. Scand J Clin Lab Invest 1960;12:Suppl 51:1–117.

    PubMed  Google Scholar 

  60. Gaarder A, Jonsen J, Laland S, et al. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 1961;192:531–2.

    Article  CAS  PubMed  Google Scholar 

  61. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927–9.

    Article  CAS  PubMed  Google Scholar 

  62. Livio M, Gotti E, Marchesi D, et al. Uraemic bleeding role of anaemia and beneficial effect of red cell transfusions. Lancet 1982;II:1013–5.

    Article  Google Scholar 

  63. Moia M, Mannucci PM, Vizzotto L, et al. Improvement in the haemostatic defect of uraemia after treatment with recombinant human erythropoietin. Lancet 1987;II:1227–9.

    Article  Google Scholar 

  64. Maurin N, Fitzner S, Fritz H, et al. Influence of recombinant human erythropoietin on hematological and hemostatic parameters with special reference to microhemolysis. Clin Nephrol 1995;43:196–200.

    CAS  PubMed  Google Scholar 

  65. Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science 1980;207:541–3.

    Article  CAS  PubMed  Google Scholar 

  66. Schmid-Schönbein H, Born GVR, Richardson PD, et al. Rheology of thrombotic processes in flow: the interaction of erythrocytes and thrombocytes subjected to high flow forces. Biorheology 1981;18:415–44.

    PubMed  Google Scholar 

  67. Stohlawetz PJ, Dzirlo L, Hergovich N et al. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 2000;95:2983–9.

    CAS  PubMed  Google Scholar 

  68. Diaz-Ricart M, Etebanell E, Cases A, et al. Erythropoietin improves signalling through tyrosine phosphorylation in platelets from uremic patients. Thromb Haemost 1999;82:1312–7.

    CAS  PubMed  Google Scholar 

  69. Zhou XJ, Vaziri ND. Defective calcium signalling in uraemic platelets and its amelioration with long-term erythropoietin therapy. Nephrol Dial Transplant 2002;17:992–7.

    Article  CAS  PubMed  Google Scholar 

  70. Streja E, Kovesdy CP, Greenland S, et al. Erythropoietin, iron depletion, and relative thrombocytosis: a possible explanation for hemoglobin-survival paradox in hemodialysis. Am J Kidney Dis 2008;52:727–36.

    Article  CAS  PubMed  Google Scholar 

  71. Gemeinsamer Bundesausschuss. Richtlinie des Gemeinsamen Bundesausschusses zur Sicherung der Qualität von Dialyse-Behandlungen nach §§ 136 und 136a SGB V (Qualitätssicherungs-Richtlinie Dialyse). Dtsch Ärztebl 2005;103:B1709–13.

    Google Scholar 

  72. Maurin N. Zum optimalen Hämoglobinzielbereich bei renaler Anämie. Med Klin (Munich) 2008;103:633–7.

    Article  CAS  Google Scholar 

  73. National Kidney Foundation. KDOQI clinical practice guideline and clinical practice recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kidney Dis 2007;50:474–530.

    Google Scholar 

  74. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998;339:584–90.

    Article  CAS  PubMed  Google Scholar 

  75. Singh AK, Szczech L, Tang KL, et al. Correlation of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 2006;355:2085–98.

    Article  CAS  PubMed  Google Scholar 

  76. Strippoli GFM, Craig JC, Manno C, et al. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol 2004;15:3154–65.

    Article  PubMed  Google Scholar 

  77. Phrommintikul A, Haas SJ, Elsik M, et al. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 2007;369:381–8.

    Article  CAS  PubMed  Google Scholar 

  78. Will EJ. Aiming at averages. J R Soc Med 2001;94:617–9.

    CAS  PubMed  Google Scholar 

  79. Will EJ. Targets and targeting. Am J Kidney Dis 2001;38:411–4.

    Article  CAS  PubMed  Google Scholar 

  80. Foley RN, Curtis BM, Parfrey PS. Erythropoietin therapy, hemoglobin targets, and quality of life in healthy hemodialysis patients: a randomized trial. Clin J Am Soc Nephrol 2009;4:726–33.

    Article  CAS  PubMed  Google Scholar 

  81. Marsden PA. Treatment of anemia in chronic kidney disease — strategies based on evidence. N Engl J Med 2009;361:2089–90.

    Article  CAS  PubMed  Google Scholar 

  82. Unger EF, Thompson AM, Blank MJ, et al. Erythropoiesis-stimulating agents — time for a reevaluation. N Engl J Med 2010;362:189–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Maurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurin, N. Die Rolle der Thrombozyten bei Atherosklerose, Diabetes mellitus und chronischer Niereninsuffizienz. Med Klin 105, 339–344 (2010). https://doi.org/10.1007/s00063-010-1062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-010-1062-2

Schlüsselwörter:

Key Words:

Navigation