Skip to main content
Log in

Kalzifizierte Stenosen richtig behandeln

Treat calcified stenoses correctly

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Aufgrund des demographischen Wandels mit einem zunehmenden Alterungsprozess der Bevölkerung und steigenden Inzidenzen der Komorbiditäten wie Diabetes mellitus, arterielle Hypertonie und chronische Nierenerkrankungen werden vermehrt ältere Patienten mit hohem Risikoprofil und verkalkten Koronarläsionen in der interventionellen Kardiologie behandelt. Trotz einer fortwährenden Weiterentwicklung der technischen Möglichkeiten und Materialien sind die Behandlungen schwer kalzifizierter Stenosen weiterhin mit einem erhöhten periprozeduralen Komplikationsrisiko und im weiteren Verlauf mit einem schlechteren klinischen Langzeitergebnis verbunden. In diesem Artikel sollen die verschiedenen Therapieansätze erörtert und in einem Algorithmus zur Behandlung schwer kalzifizierter Stenosen zusammengefasst werden.

Abstract

Due to the demographic changes with an increasing aging process of the population and the increasing incidence of comorbidities, such as diabetes mellitus, arterial hypertension, and chronic kidney disease, older patients with high-risk profiles and calcified coronary lesions are being treated more often in interventional cardiology. Despite advances in technical possibilities and materials, the treatment of severely calcified stenoses continues to be associated with an increased periprocedural risk of complications and poor long-term clinical outcomes. The purpose of this article is to discuss the various treatment approaches and summarize them in an algorithm for the treatment of severely calcified stenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Serruys PW, Morice MC, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972

    Article  CAS  PubMed  Google Scholar 

  2. Mori H, Torii S, Kutyna M et al (2018) Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging 11:127–142

    Article  PubMed  Google Scholar 

  3. Copeland-Halperin RS, Baber U, Aquino M et al (2018) Prevalence, correlates, and impact of coronary calcification on adverse events following PCI with newer-generation DES: findings from a large multiethnic registry. Catheter Cardiovasc Interv 91:859–866

    Article  PubMed  Google Scholar 

  4. Bourantas CV, Zhang YJ, Garg S et al (2014) Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart 100:1158–1164

    Article  PubMed  Google Scholar 

  5. Huisman J, van der Heijden LC, Kok MM et al (2017) Two-year outcome after treatment of severely calcified lesions with newer-generation drug-eluting stents in acute coronary syndromes: a patient-level pooled analysis from TWENTE and DUTCH PEERS. J Cardiol 69:660–665

    Article  PubMed  Google Scholar 

  6. Genereux P, Madhavan MV, Mintz GS et al (2014) Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. Pooled analysis from the HORIZONS-AMI (harmonizing outcomes with Revascularization and Stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) TRIALS. J Am Coll Cardiol 63:1845–1854

    Article  PubMed  Google Scholar 

  7. Giustino G, Mastoris I, Baber U et al (2016) Correlates and impact of coronary artery calcifications in women undergoing percutaneous coronary intervention with drug-eluting stents: from the women in innovation and drug-eluting Stents (WIN-DES) collaboration. JACC Cardiovasc Interv 9:1890–1901

    Article  PubMed  Google Scholar 

  8. Genereux P, Redfors B, Witzenbichler B et al (2017) Two-year outcomes after percutaneous coronary intervention of calcified lesions with drug-eluting stents. Int J Cardiol 231:61–67

    Article  PubMed  Google Scholar 

  9. Sorini Dini C, Nardi G, Ristalli F et al (2019) Contemporary approach to heavily calcified coronary lesions. Interv Cardiol 14:154–163

    Article  PubMed  PubMed Central  Google Scholar 

  10. Madhavan MV, Tarigopula M, Mintz GS et al (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol 63:1703–1714

    Article  CAS  PubMed  Google Scholar 

  11. Mintz GS, Popma JJ, Pichard AD et al (1995) Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91:1959–1965

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, Matsumura M, Usui E et al (2021) Intravascular ultrasound-derived calcium score to predict stent expansion in severely calcified lesions. Circ Cardiovasc Interv 14:e10296

    Article  CAS  PubMed  Google Scholar 

  13. Fujino A, Mintz GS, Matsumura M et al (2018) A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention 13:e2182–e2189

    Article  PubMed  Google Scholar 

  14. Rai H, Harzer F, Otsuka T et al (2022) Stent optimization using optical coherence tomography and its prognostic implications after percutaneous coronary intervention. J Am Heart Assoc 11:e23493

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yabushita H, Bouma BE, Houser SL et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  16. Chu M, Jia H, Gutierrez-Chico JL et al (2021) Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques. EuroIntervention 17:41–50

    Article  PubMed  Google Scholar 

  17. Januszek R, Silka W, Sabatowski K et al (2022) Procedure-related differences and clinical outcomes in patients treated with percutaneous coronary intervention assisted by optical coherence tomography between new and earlier generation software (Ultreon 1.0 software vs. AptiVue software). J Cardiovasc Dev Dis 9(7):218

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia H, Abtahian F, Aguirre AD et al (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758

    Article  PubMed  Google Scholar 

  19. Prati F, Gatto L, Fabbiocchi F et al (2020) Clinical outcomes of calcified nodules detected by optical coherence tomography: a sub-analysis of the CLIMA study. EuroIntervention 16:380–386

    Article  PubMed  Google Scholar 

  20. Secco GG, Buettner A, Parisi R et al (2019) Clinical experience with very high-pressure dilatation for resistant coronary lesions. Cardiovasc Revasc Med 20:1083–1087

    Article  PubMed  Google Scholar 

  21. Secco GG, Ghione M, Mattesini A et al (2016) Very high-pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon. EuroIntervention 12:359–365

    Article  PubMed  Google Scholar 

  22. Karvouni E, Stankovic G, Albiero R et al (2001) Cutting balloon angioplasty for treatment of calcified coronary lesions. Catheter Cardiovasc Interv 54:473–481

    Article  CAS  PubMed  Google Scholar 

  23. Okura H, Hayase M, Shimodozono S et al (2002) Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: an intravascular ultrasound study. Catheter Cardiovasc Interv 57:429–436

    Article  PubMed  Google Scholar 

  24. Mauri L, Bonan R, Weiner BH et al (2002) Cutting balloon angioplasty for the prevention of restenosis: results of the cutting balloon global randomized trial. Am J Cardiol 90:1079–1083

    Article  PubMed  Google Scholar 

  25. de Ribamar Costa J Jr., Mintz GS, Carlier SG et al (2007) Nonrandomized comparison of coronary stenting under intravascular ultrasound guidance of direct stenting without predilation versus conventional predilation with a semi-compliant balloon versus predilation with a new scoring balloon. Am J Cardiol 100:812–817

    Article  PubMed  Google Scholar 

  26. Sugawara Y, Ueda T, Soeda T et al (2019) Plaque modification of severely calcified coronary lesions by scoring balloon angioplasty using Lacrosse non-slip element: insights from an optical coherence tomography evaluation. Cardiovasc Interv Ther 34:242–248

    Article  PubMed  Google Scholar 

  27. Neumann FJ, Sousa-Uva M, Ahlsson A et al (2019) 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40:87–165

    Article  PubMed  Google Scholar 

  28. Izumi M, Tsuchikane E, Funamoto M et al (2001) Final results of the CAPAS trial. Am Heart J 142:782–789

    Article  CAS  PubMed  Google Scholar 

  29. Bulluck H, McEntegart M (2022) Contemporary tools and devices for coronary calcium modification. JRSM Cardiovasc Dis 11:20480040221089760

    PubMed  PubMed Central  Google Scholar 

  30. Barbato E, Carrie D, Dardas P et al (2015) European expert consensus on rotational atherectomy. EuroIntervention 11:30–36

    Article  PubMed  Google Scholar 

  31. Whitlow PL, Bass TA, Kipperman RM et al (2001) Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol 87:699–705

    Article  CAS  PubMed  Google Scholar 

  32. Kim SS, Yamamoto MH, Maehara A et al (2018) Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions. Int J Cardiovasc Imaging 34:1365–1371

    Article  PubMed  Google Scholar 

  33. Okamoto N, Ueda H, Bhatheja S et al (2019) Procedural and one-year outcomes of patients treated with orbital and rotational atherectomy with mechanistic insights from optical coherence tomography. EuroIntervention 14:1760–1767

    Article  PubMed  Google Scholar 

  34. Abdel-Wahab M, Richardt G, Büttner HJ et al (2013) High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (rotational atherectomy prior to taxus stent treatment for complex native coronary artery disease) trial. JACC Cardiovasc Interv 6:10–19

    Article  PubMed  Google Scholar 

  35. Amemiya K, Yamamoto MH, Maehara A et al (2019) Effect of cutting balloon after rotational atherectomy in severely calcified coronary artery lesions as assessed by optical coherence tomography. Catheter Cardiovasc Interv 94:936–944

    Article  PubMed  Google Scholar 

  36. Rheude T, Fitzgerald S, Allali A et al (2022) Rotational atherectomy or balloon-based techniques to prepare severely calcified coronary lesions. JACC Cardiovasc Interv 15:1864–1874

    Article  PubMed  Google Scholar 

  37. Parikh K, Chandra P, Choksi N et al (2013) Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv 81:1134–1139

    Article  PubMed  Google Scholar 

  38. Chambers JW, Feldman RL, Himmelstein SI et al (2014) Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv 7:510–518

    Article  PubMed  Google Scholar 

  39. Barrett C, Warsavage T, Kovach C et al (2021) Comparison of rotational and orbital atherectomy for the treatment of calcific coronary lesions: Insights from the VA clinical assessment reporting and tracking (CART) program. Catheter Cardiovasc Interv 97:E219–E226

    Article  PubMed  Google Scholar 

  40. Appelman YE, Piek JJ, Strikwerda S et al (1996) Randomised trial of excimer laser angioplasty versus balloon angioplasty for treatment of obstructive coronary artery disease. Lancet 347:79–84

    Article  CAS  PubMed  Google Scholar 

  41. Reifart N, Vandormael M, Krajcar M et al (1997) Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer laser, rotational atherectomy, and balloon angioplasty comparison (ERBAC) study. Circulation 96:91–98

    Article  CAS  PubMed  Google Scholar 

  42. Ali ZA, Brinton TJ, Hill JM et al (2017) Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging 10:897–906

    Article  PubMed  Google Scholar 

  43. Ali ZA, Nef H, Escaned J et al (2019) Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the disrupt CAD II study. Circ Cardiovasc Interv 12:e8434

    Article  CAS  PubMed  Google Scholar 

  44. Kassimis G, Didagelos M, De Maria GL et al (2020) Shockwave intravascular lithotripsy for the treatment of severe vascular calcification. Angiology 71:677–688

    Article  PubMed  Google Scholar 

  45. Ishida M, Oshikiri Y, Kimura T et al (2022) High-definition intravascular ultrasound versus optical frequency domain imaging for the detection of calcium modification and fracture in heavily calcified coronary lesion. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-021-02521-8

    Article  PubMed  Google Scholar 

  46. Brinton TJ, Ali ZA, Hill JM et al (2019) Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses. Circulation 139:834–836

    Article  PubMed  Google Scholar 

  47. Fujii K, Carlier SG, Mintz GS et al (2005) Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 45:995–998

    Article  CAS  PubMed  Google Scholar 

  48. Hong MK, Mintz GS, Lee CW et al (2006) Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J 27:1305–1310

    Article  PubMed  Google Scholar 

  49. Meneveau N, Souteyrand G, Motreff P et al (2016) Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (does optical coherence tomography optimize results of stenting). Circulation 134:906–917

    Article  PubMed  Google Scholar 

  50. Prati F, Romagnoli E, Burzotta F et al (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8:1297–1305

    Article  PubMed  Google Scholar 

  51. Antonsen L, Thayssen P, Maehara A et al (2015) Optical coherence tomography guided percutaneous coronary intervention with Nobori stent implantation in patients with non-ST-segment-elevation myocardial infarction (OCTACS) trial: difference in strut coverage and dynamic malapposition patterns at 6 months. Circ Cardiovasc Interv 8:e2446

    Article  PubMed  Google Scholar 

  52. Ali ZA, Maehara A, Généreux P et al (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388:2618–2628

    Article  PubMed  Google Scholar 

  53. Kubo T, Shinke T, Okamura T et al (2017) Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J 38:3139–3147

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Gori.

Ethics declarations

Interessenkonflikt

R. Blessing und T. Gori geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blessing, R., Gori, T. Kalzifizierte Stenosen richtig behandeln. Herz 47, 503–512 (2022). https://doi.org/10.1007/s00059-022-05144-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05144-4

Schlüsselwörter

Keywords

Navigation