Skip to main content
Log in

Diagnostic role of echocardiography for patients with heart failure symptoms and preserved left ventricular ejection fraction

Rolle der Echokardiographie in der Diagnostik bei Patienten mit Herzinsuffizienzsymptomen und erhaltener linksventrikulärer Ejektionsfraktion

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The syndrome heart failure with preserved ejection fraction (HFpEF) represents patients with different comorbidities and specific etiologies, but with a key and common alteration: an elevation in left ventricular (LV) filling pressure or pulmonary capillary wedge pressure (PCWP). Expert consensuses, society guidelines, and diagnostic scores have been stated to diagnose HFpEF syndrome based mainly on the determination of elevated LV filling pressure or PCWP by transthoracic echocardiography (TTE). Echocardiographic parameters such as early (E) and late diastolic mitral inflow velocity (mitral E/A ratio), septal and lateral mitral annular early diastolic velocity (E′), ratio of the early diastolic mitral inflow and annular velocity (E/E′-ratio), maximal left atrial volume index (LAVImax), and tricuspid regurgitation peak velocity (VTR) constitute the pivotal parameters for determining elevated LV filling pressure or PCWP in patients with suspected HFpEF symptoms. Notwithstanding this, taking into consideration the heterogeneity of patients with HFpEF symptoms, the term “HFpEF” should be considered as a syndrome rather than an entity since HFpEF results from different pathological entities that should and can be characterized by echocardiography and multimodality imaging. Comprehensive TTE might help diagnose specific diseases and etiologies by characterization of specific cardiac phenotypes.

Zusammenfassung

Das Syndrom der Herzinsuffizienz mit erhaltener Ejektionsfraktion („heart failure with preserved ejection fraction“, HFpEF) steht für Patienten mit verschiedenen Komorbiditäten und spezifischen Grunderkrankungen, die jedoch eine gemeinsame charakterisierende Veränderung zeigen, nämlich den pathologischen Anstieg der linksventrikulären (LV-)Füllungsdrücke oder des pulmonalkapillären Wedge-Drucks (PCWP). Expert Consensus Statements, nationale und internationale Leitlinien sowie Diagnose-Scores wurden publiziert, um das HFpEF-Syndrom zu diagnostizieren, vornehmlich basierend auf der Bestimmung eines erhöhten LV-Füllungsdrucks oder PCWP mittels transthorakaler Echokardiographie (TTE). Die echokardiographischen Parameter der frühen (E) und späten (A) diastolischen transmitralen Flussgeschwindigkeit sowie deren E/A-Ratio, die septale und laterale mitralringnahe Myokardgeschwindigkeit (E′), das Verhältnis der frühen transmitralen Flussgeschwindigkeit zur mitralringnahen Myokardgeschwindigkeit (E/E′-ratio), der maximale linksatriale Volumenindex (LAVImax) und die maximale transtrikuspidale Regurgitationsgeschwindigkeit (VTR) bilden die grundlegenden Pfeiler, um einen erhöhten LV-Füllungsdruck oder PCWP bei Patienten mit HFpEF-Symptomen festzustellen. Nichtsdestotrotz sollte in Anbetracht der Heterogenität der Patienten mit HFpEF-Symptomen die Bezeichnung „HFpEF“ immer als Syndrom anstelle einer Diagnose betrachtet werden, da HFpEF durch verschiedene pathologische Gegebenheiten begründet sein kann, die durch Echokardiographie und weitere multimodale Bildgebung detektiert werden können und sollten. Eine fachkundige TTE kann über die exakte Charakterisierung von echokardiographischen Phänotypen zur Diagnose spezifischer Erkrankungen und Ätiologien beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360. https://doi.org/10.1093/ehjci/jew082

    Article  PubMed  Google Scholar 

  2. Reddy YNV, Carter RE, Obokata M et al (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870. https://doi.org/10.1161/CIRCULATIONAHA.118.034646

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pieske B, Tschöpe C, de Boer RA et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the heart failure association (HFA) of the European society of cardiology (ESC). Eur Heart J 40(40):3297–3317. https://doi.org/10.1093/eurheartj/ehz641

    Article  PubMed  Google Scholar 

  4. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  5. Smiseth OA, Morris DA, Cardim N et al (2022) Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeab154

    Article  PubMed  Google Scholar 

  6. Braunwald E (2021) Heart failure with preserved ejection fraction: a stepchild no more! Eur Heart J 42(38):3900–3901. https://doi.org/10.1093/eurheartj/ehab601

    Article  PubMed  Google Scholar 

  7. Fayol A, Wack M, Livrozet M et al (2021) Aetiological classification and prognosis in patients with heart failure with preserved ejection fraction. ESC Heart Fail. https://doi.org/10.1002/ehf2.13717

    Article  PubMed  PubMed Central  Google Scholar 

  8. European Study Group on Diastolic Heart Failure (1998) How to diagnose diastolic heart failure. Eur Heart J 19(7):990–1003. https://doi.org/10.1053/euhj.1998.1057

    Article  Google Scholar 

  9. Paulus WJ, Tschöpe C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European society of cardiology. Eur Heart J 28(20):2539–2550. https://doi.org/10.1093/eurheartj/ehm037

    Article  PubMed  Google Scholar 

  10. Dickstein K, Cohen-Solal A, Filippatos G et al (2008of) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the heart failure association of the ESC (HFA) and endorsed by the European society of intensive care medicine (ESICM). Eur J Heart Fail 10(10):933–989. https://doi.org/10.1016/j.ejheart.2008.08.005

    Article  PubMed  Google Scholar 

  11. McMurray JJ, Adamopoulos S, Anker SD et al (2012of) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 33(14):1787–1847. https://doi.org/10.1093/eurheartj/ehs104

    Article  PubMed  Google Scholar 

  12. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  13. Brutsaert DL, Sys SU, Gillebert TC (1993) Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol 22(1):318–325. https://doi.org/10.1016/0735-1097(93)90850-z

    Article  CAS  PubMed  Google Scholar 

  14. Nagueh SF (2020) Diastology: 2020—a practical guide. Echocardiography 37(11):1919–1925. https://doi.org/10.1111/echo.14742

    Article  PubMed  Google Scholar 

  15. Brutsaert DL, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69(4):1228–1315. https://doi.org/10.1152/physrev.1989.69.4.1228

    Article  CAS  PubMed  Google Scholar 

  16. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  17. Rigolli M, Anandabaskaran S, Christiansen JP et al (2016) Bias associated with left ventricular quantification by multimodality imaging: a systematic review and meta-analysis. Open Heart 3:388. https://doi.org/10.1136/openhrt-2015-000388

    Article  Google Scholar 

  18. Ommen SR, Nishimura RA, Appleton CP et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102(15):1788–1794. https://doi.org/10.1161/01.cir.102.15.1788

    Article  CAS  PubMed  Google Scholar 

  19. Kasner M, Westermann D, Steendijk P et al (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116(6):637–647. https://doi.org/10.1161/CIRCULATIONAHA.106.661983

    Article  PubMed  Google Scholar 

  20. Werhahn SM, Becker C, Mende M et al (2022) NT-proBNP as a marker for atrial fibrillation and heart failure in four observational outpatient trials. ESC Heart Fail 9(1):100–109. https://doi.org/10.1002/ehf2.13703

    Article  PubMed  Google Scholar 

  21. Paulus WJ (2018) H2FPEF score: at last, a properly validated diagnostic algorithm for heart failure with preserved ejection fraction. Circulation 138(9):871–873. https://doi.org/10.1161/CIRCULATIONAHA.118.035711

    Article  PubMed  Google Scholar 

  22. Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP et al (2020) Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction. Eur J Heart Fail 22(3):413–421. https://doi.org/10.1002/ejhf.1614

    Article  CAS  PubMed  Google Scholar 

  23. Sanders-van Wijk S, Barandiarán Aizpurua A, Brunner-La Rocca HP et al (2021) The HFA-PEFF and H2 FPEF scores largely disagree in classifying patients with suspected heart failure with preserved ejection fraction. Eur J Heart Fail 23(5):838–840. https://doi.org/10.1002/ejhf.2019

    Article  PubMed  Google Scholar 

  24. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  25. Paulus WJ, Zile MR (2021) From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res 128(10):1451–1467. https://doi.org/10.1161/CIRCRESAHA.121.318159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Massie BM, Carson PE, McMurray JJ et al (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359(23):2456–2467. https://doi.org/10.1056/NEJMoa0805450

    Article  CAS  PubMed  Google Scholar 

  27. Pitt B, Pfeffer MA, Assmann SF et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370(15):1383–1392. https://doi.org/10.1056/NEJMoa1313731

    Article  CAS  PubMed  Google Scholar 

  28. Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381(17):1609–1620. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  29. Omar AM, Bansal M, Sengupta PP (2016) Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ Res 119(2):357–374. https://doi.org/10.1161/CIRCRESAHA.116.309128

    Article  CAS  PubMed  Google Scholar 

  30. Čelutkienė J, Plymen CM, Flachskampf FA et al (2018) Innovative imaging methods in heart failure: a shifting paradigm in cardiac assessment. Position statement on behalf of the heart failure association of the European society of cardiology. Eur J Heart Fail 20(12):1615–1633. https://doi.org/10.1002/ejhf.1330

    Article  PubMed  Google Scholar 

  31. Obokata M, Reddy YNV, Borlaug BA (2019) The role of echocardiography in heart failure with preserved ejection fraction: what do we want from imaging? Heart Fail Clin 15(2):241–256. https://doi.org/10.1016/j.hfc.2018.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lewis GA, Pearce K, Williams SG et al (2021) The utility of cardiovascular imaging in heart failure with preserved ejection fraction: diagnosis, biological classification and risk stratification. Heart Fail Rev 26(3):661–678. https://doi.org/10.1007/s10741-020-10047-9

    Article  PubMed  Google Scholar 

  33. Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46. https://doi.org/10.1093/ehjci/jer316

    Article  PubMed  Google Scholar 

  34. Amzulescu MS, De Craene M, Langet H et al (2019) Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 20(6):605–619. https://doi.org/10.1093/ehjci/jez041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voigt JU, Cvijic M (2019) 2‑ and 3‑dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12(9):1849–1863. https://doi.org/10.1016/j.jcmg.2019.01.044

    Article  PubMed  Google Scholar 

  36. Kobayashi M, Huttin O, Magnusson M et al (2022) Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals. JACC Cardiovasc Imaging 15(2):193–208. https://doi.org/10.1016/j.jcmg.2021.07.004

    Article  PubMed  Google Scholar 

  37. Borlaug BA, Lam CSP, Roger VL et al (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease. Insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54(5):410–418. https://doi.org/10.1016/j.jacc.2009.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ky B, French B, Khan AM et al (2013) Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol 62(13):1165–1172. https://doi.org/10.1016/j.jacc.2013.03.085

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schwarzl M, Ojeda F, Zeller T et al (2016) Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure-volume relationship in non-heart failure individuals: data from a large-scale, population-based cohort. Eur Heart J 37(23):1807–1814. https://doi.org/10.1093/eurheartj/ehw120

    Article  PubMed  Google Scholar 

  40. Shishido T, Hayashi K, Shigemi K et al (2000) Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102(16):1983–1989. https://doi.org/10.1161/01.cir.102.16.1983

    Article  CAS  PubMed  Google Scholar 

  41. Chen CH, Fetics B, Nevo E et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38(7):2028–2034. https://doi.org/10.1016/s0735-1097(01)01651-5

    Article  CAS  PubMed  Google Scholar 

  42. Russell K, Eriksen M, Aaberge L et al (2012) A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J 33(6):724–733. https://doi.org/10.1093/eurheartj/ehs016

    Article  PubMed  PubMed Central  Google Scholar 

  43. Belyavskiy E, Morris DA, Url-Michitsch M et al (2019) Diastolic stress test echocardiography in patients with suspected heart failure with preserved ejection fraction: a pilot study. ESC Heart Fail 6(1):146–153. https://doi.org/10.1002/ehf2.12375

    Article  PubMed  Google Scholar 

  44. Maeder MT, Thompson BR, Brunner-La Rocca HP et al (2010) Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol 56(11):855–863. https://doi.org/10.1016/j.jacc.2010.04.040

    Article  PubMed  Google Scholar 

  45. Nauta JF, Hummel YM, van der Meer P et al (2018) Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 20(9):1303–1311. https://doi.org/10.1002/ejhf.1220

    Article  PubMed  Google Scholar 

Download references

Funding

Research of Carsten Tschöpe was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1470, project: B02. Research of Rudolf A. de Boer was funded by the Netherlands Heart Foundation (CVON grants 2017-21; 2017-11; 2018-30; 2020B005) and the European Research Council (ERC CoG 818715). For all other authors this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hagendorff.

Ethics declarations

Conflict of interest

A. Hagendorff, S. Stöbe, J. Kandels, R. de Boer and C. Tschöpe declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagendorff, A., Stöbe, S., Kandels, J. et al. Diagnostic role of echocardiography for patients with heart failure symptoms and preserved left ventricular ejection fraction. Herz 47, 293–300 (2022). https://doi.org/10.1007/s00059-022-05118-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05118-6

Keywords

Schlüsselwörter

Navigation