Skip to main content
Log in

Associations between nine candidate genetic polymorphisms with coronary heart disease

A meta-analysis

Zusammenhang zwischen 9 Kandidaten für genetische Polymorphismen und koronarer Herzkrankheit

Metaanalyse

  • Review articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to obtain a more accurate assessment of the potential association between nine genetic polymorphisms and the risk of coronary heart disease (CHD).

Methods

A literature search was performed in PubMed, Embase, OVID, Web of Science, Wanfang, and Chinese National Knowledge Infrastructure (CNKI) databases to identify eligible studies. We analyzed the odds ratios (OR) and 95% confidence intervals (CI) to assess the strength of the associations.

Results

A significant association was found between the PON1 −108C/T polymorphism and CHD risk (TT vs. CC: OR = 1.67, 95% CI = 1.14–2.47, p = 0.009; CT vs. CC: OR = 1.47, 95% CI = 1.17–1.85, p = 0.001; [TT + CT] vs. CC: OR = 1.56, 95% CI = 1.18–2.06, p = 0.002; T allele vs. C allele: OR = 1.28, 95%CI = 1.06–1.54, p = 0.011). There was a significant association between the hOGG1 +1245C/G polymorphism and CHD (GG vs. CC: OR = 2.33, 95% CI: 1.19–4.56, p = 0.014; CG vs. CC: OR = 1.36, 95% CI: 1.01–1.83, p = 0.046; [GG + CG] vs. CC: OR = 1.46, 95% CI: 1.10–1.94, p = 0.010; GG vs. [CC+CG]: OR = 2.11, 95% CI: 1.08–4.10, p = 0.028; G allele vs. C allele: OR = 1.45, 95% CI: 1.14–1.84, p = 0.002). The results also showed a statistically significant association of the SCARB1 +1050C/T polymorphism with CHD (TT vs. CC: OR = 1.30, 95% CI = 1.04–1.62, p = 0.022). Meta-analyses of the other six polymorphisms suggested a lack of any association with CHD risk.

Conclusion

Our results show that the susceptibility to CHD was associated with three polymorphisms: PON1 −108C/T, hOGG1 +1245C/G, and SCARB1 +1050C/T.

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war es, eine genauere Beurteilung des möglichen Zusammenhangs zwischen 9 genetischen Polymorphismen und dem Risiko für eine koronare Herzkrankheit (KHK) zu erhalten.

Methoden

Um geeignete Studien zu finden, wurde eine Literatursuche in den Datenbanken PubMed, Embase, OVID, Web of Science, Wanfang und Chinese National Knowledge Infrastructure (CNKI) durchgeführt. Die Autoren berechneten die Odds Ratio (OR) und das 95%-Konfidenzintervall (95%-KI), um die Stärke des Zusammenhangs zu ermitteln.

Ergebnisse

Es wurde ein signifikanter Zusammenhang zwischen dem PON1−108C/T-Polymorphismus und dem KHK-Risiko festgestellt (TT vs. CC: OR = 1,67; 95%-KI = 1,14–2,47; p = 0,009; CT vs. CC: OR = 1,47; 95%-KI = 1,17–1,85; p = 0,001; [TT + CT] vs. CC: OR = 1,56; 95%-KI = 1,18–2,06; p = 0,002; T‑Allel vs. C‑Allel: OR = 1,28; 95%-KI = 1,06–1,54; p = 0,011). Auch bestand ein signifikanter Zusammenhang zwischen dem hOGG1+1245C/G-Polymorphismus und KHK (GG vs. CC: OR = 2,33; 95%-KI: 1,19–4,56; p = 0,014; CG vs. CC: OR = 1,36; 95%-KI: 1,01–1,83; p = 0,046; [GG + CG] vs. CC: OR = 1,46; 95%-KI: 1,10–1,94; p = 0,010; GG vs. [CC+CG]: OR = 2,11; 95%-KI: 1,08–4,10; p = 0,028; G‑Allel vs. C‑Allel: OR = 1,45; 95%-KI: 1,14–1,84; p = 0,002). Die Ergebnisse zeigten auch einen statistisch signifikanten Zusammenhang des SCARB1+1050C/T-Polymorphismus mit KHK (TT vs. CC: OR = 1,30; 95%-KI = 1,04–1,62; p = 0,022). Metaanalysen der übrigen 6 Polymorphismen ergaben keine Hinweise auf einen Zusammenhang mit dem KHK-Risiko.

Schlussfolgerung

Die vorliegenden Ergebnisse zeigen, dass die Anfälligkeit für eine KHK mit 3 Polymorphismen in Zusammenhang stand: PON1 −108C/T, hOGG1 +1245C/G und SCARB1 +1050C/T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kingsbury KJ, Bondy G (2003) Understanding the essentials of blood lipid metabolism. Prog Cardiovasc Nurs 18(1):13–18

    Article  Google Scholar 

  2. Saedi M, Vaisi-Raygani A, Khaghani S, Shariftabrizi A, Rezaie M, Pasalar P, Rahimi Z, Pourmotabbed T (2012) Matrix metalloproteinase-9 functional promoter polymorphism 1562C>T increased risk of early-onset coronary artery disease. Mol Biol Rep 39(1):555–562. https://doi.org/10.1007/s11033-011-0770-x

    Article  CAS  PubMed  Google Scholar 

  3. Zhou X, Chen J, Xu W (2012) Association between C1431T polymorphism in peroxisome proliferator-activated receptor-γ gene and coronary artery disease in Chinese Han population. Mol Biol Rep 39(2):1863–1868. https://doi.org/10.1007/s11033-011-0931-y

    Article  CAS  PubMed  Google Scholar 

  4. Vogel LK, Saebo M, Hoyer H et al (2014) Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS ONE 9(8):e105254. https://doi.org/10.1371/journal.pone.0105254

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mackness B, Turkie W, Mackness M (2013) Paraoxonase-1 (PON1) promoter region polymorphisms, serum PON1 status and coronary heart disease. Arch Med Sci 9(1):8–13. https://doi.org/10.5114/aoms.2013.33189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aviram MRM, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 101(8):1581–1590

    Article  CAS  Google Scholar 

  7. Hirata K, Dichek HL, Cioffi JA, Choi SY, Leeper NJ, Quintana L, Kronmal GS, Cooper AD, Quertermous T (1999) Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem 274(20):14170–14175

    Article  CAS  Google Scholar 

  8. Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ (1999) A novel endothelial-derived lipase that modulates hdl metabolism. Nat Genet 21(4):424–428

    Article  CAS  Google Scholar 

  9. Maugeais C, Tietge UJF, Broedl UC, Marchadier D, Cain W, McCoy MG, Lund-Katz S, Glick JM, Rader DJ (2003) Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation 108(17):2121–2126

    Article  CAS  Google Scholar 

  10. Edmondson AC, Brown RJ, Kathiresan S, Cupples LA, Demissie S, Manning AK, Jensen MK, Rimm EB, Wang J, Rodrigues A, Bamba V, Khetarpal SA, Wolfe ML, Derohannessian S, Li M, Reilly MP, Aberle J, Evans D, Hegele RA, Rader DJ (2009) Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest 119(4):1042–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH, Rader DJ (2010) Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein b‑containing lipoproteins. Circ Res 107(3):357–364

    Article  CAS  Google Scholar 

  12. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530

    CAS  PubMed  Google Scholar 

  13. Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    Article  CAS  Google Scholar 

  14. Ketterer B (1988) Protective role of glutathione and glutathione transferases in muta-genesis and carcinogenesis. Mutat Res 202(2):343–361

    Article  CAS  Google Scholar 

  15. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248):518–520

    Article  CAS  Google Scholar 

  16. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M (1997) A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA 94(23):12610–12615

    Article  CAS  Google Scholar 

  17. Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, Fang Q, Gosselin ML, Dixon KL, Deeds JD, Acton SL, Tall AR, Huszar D (1998) Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci USA 95(8):4619–4624

    Article  CAS  Google Scholar 

  18. West M, Greason E, Kolmakova A, Jahangiri A, Asztalos B, Pollin TI, Rodriguez A (2009) Scavenger receptor class B type I protein as an independent predictor of high-density lipoprotein cholesterol levels in subjects with hyperalphalipoproteinemia. J Clin Endocrinol Metab 94(4):1451–1457

    Article  CAS  Google Scholar 

  19. Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12(8):360–365

    Article  CAS  Google Scholar 

  20. Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95(6):568–578

    Article  CAS  Google Scholar 

  21. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci USA 103(26):10086–10091

    Article  CAS  Google Scholar 

  22. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  Google Scholar 

  23. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  24. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  Google Scholar 

  26. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101

    Article  CAS  Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  Google Scholar 

  28. James RW, Leviev I, Ruiz J, Passa P, Froguel P, Garin MC (2000) Promoter polymorphism T(-107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in type 2 diabetic patients. Diabetes 49(8):1390–1393

    Article  CAS  Google Scholar 

  29. Huo Z, Zhou X, Zheng F, Ye GM, He X, Liu F, Li X (2002) Relationship between a polymorphism in the promoter region of Chinese Hans paraoxonase gene and coronary heart diseases. Basic Med Sci Clin 22(6):534–537

    Google Scholar 

  30. Wang X, Fan Z, Huang J et al (2003) Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arterioscler Thromb Vasc Biol 23(2:328–334

    Article  Google Scholar 

  31. Blatter Garin M‑C, Moren X, James RW (2006) Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. J Lipid Res 47(3):515–520. https://doi.org/10.1194/jlr.M500281-JLR200

    Article  CAS  PubMed  Google Scholar 

  32. Shao HQ, Zhang Y (2006) The analysis of CAD with PON1−108C/T−162A/G polymorphism. Chin J Gerontol 26(1):13–16

    Google Scholar 

  33. Shano HQ, Qin B, Zhang Y (2007) Study on relationship between paraoxonase-1 and type 2 diabetes mellitus complicated by coronary heart disease. China J Mod Med 17(15):1841–1846

    Google Scholar 

  34. Saeed M, Perwaiz Iqbal M, Yousuf FA et al (2007) Interactions and associations of paraoxonase gene cluster polymorphisms with myocardial infarction in a Pakistani population. Clin Genet 71(3):238–244. https://doi.org/10.1111/j.1399-0004.2007.00753.x

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad I, Narang R, Venkatraman A, Das N (2011) Frequency distribution of the single-nucleotide −108C/T polymorphism at the promoter region of the PON1 gene in Asian Indians and its relationship with coronary artery disease. J Community Genet 2(1):27–32. https://doi.org/10.1007/s12687-011-0037-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gupta N, Singh S, Maturu VN, Sharma YP, Gill KD (2011) Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting cad risk in North-West Indian Punjabis. PLoS ONE 6(5):e17805. https://doi.org/10.1371/journal.pone.0017805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta N, Binu KB, Singh S et al (2012) Low serum PON1 activity: An independent risk factor for coronary artery disease in North-West Indian type 2 diabetics. Gene 498(1):13–19. https://doi.org/10.1016/j.gene.2012.01.091

    Article  CAS  PubMed  Google Scholar 

  38. Cai GJ, He GP, Huang ZY, Qi CP (2014) Lack of association between a common polymorphism of the endothelial lipase gene and early-onset coronary artery disease in a Chinese Han population. Genet Mol Res 13(1):1059–1069. https://doi.org/10.4238/2014.February.20.7

    Article  CAS  PubMed  Google Scholar 

  39. Xie L, Sun Y, Tong Y, Liu Y, Deng Y (2015) Association of endothelial lipase gene-384A/C with coronary artery disease in Han Chinese people. BMJ Open 5(6):e7621. https://doi.org/10.1136/bmjopen-2015-007621

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cai GJ, He GP, Qi CP (2012) Association of endothelial lipase-384A/C gene polymorphism with acute coronary syndrome and blood lipids in Chinese elderly. Chin J Mult Organ Dis Elderly 11(11):821–824

    Google Scholar 

  41. Cai GJ, He GP, Qi CP (2014) Association of endothelial lipase-384A/C gene polymorphism with acute coronary syndrome and blood lipids. Chin J Emerg Med 23(2):216–219

    CAS  Google Scholar 

  42. Gokkusu C, Cakmakoglu B, Dasdemir S et al (2013) Association between genetic variants of DNA repair genes and coronary artery disease. Genet Test Mol Biomarkers 17(4):307–313. https://doi.org/10.1089/gtmb.2012.0383

    Article  CAS  PubMed  Google Scholar 

  43. Kadıoğlu E, Taçoy G, Özçağlı E et al (2016) The role of oxidative DNA damage and GSTM1, GSTT1, and hOGG1 gene polymorphisms in coronary artery disease risk. Anatol J Cardiol 16(12):931–938. https://doi.org/10.14744/AnatolJCardiol.2016.6697

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ramprasath T, Murugan PS, Kalaiarasan E, Gomathi P, Rathinavel A, Selvam GS (2012) Genetic association of glutathione peroxidase-1 (GPx-1) and NAD(P)H:quinone oxidoreductase 1(NQO1) variants and their association of CAD in patients with type-2 diabetes. Mol Cell Biochem 361(1/2):143–150. https://doi.org/10.1007/s11010-011-1098-5

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, Liu J, Zhu H et al (2014) Synergistic association of DNA repair relevant gene polymorphisms with the risk of coronary artery disease in northeastern Han Chinese. Thromb Res 133(2):229–234. https://doi.org/10.1016/j.thromres.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  46. Ramprasath T, Senthil Murugan P, Prabakaran AD, Gomathi P, Rathinavel A, Selvam GS (2011) Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem Biophys Res Commun 407(1):49–53. https://doi.org/10.1016/j.bbrc.2011.02.097

    Article  CAS  PubMed  Google Scholar 

  47. Singh N, Sinha N, Kumar S, Pandey CM, Agrawal S (2011) Glutathione S‑transferase gene polymorphism as a susceptibility factor for acute myocardial infarction and smoking in the North Indian population. Cardiology 118(1):16–21. https://doi.org/10.1159/000324066

    Article  PubMed  Google Scholar 

  48. Phulukdaree A, Khan S, Moodley D, Chuturgoon AA (2012) GST polymorphisms and early-onset coronary artery disease in young South African Indians. S Afr Med J 102(7):627–630

    Article  Google Scholar 

  49. Yeh HL, Kuo LT, Sung FC, Chiang CW, Yeh CC (2013) GSTM1, GSTT1, GSTP1, and GSTA1 genetic variants are not associated with coronary artery disease in Taiwan. Gene 523(1):64–69. https://doi.org/10.1016/j.gene.2013.02.052

    Article  CAS  PubMed  Google Scholar 

  50. Wu DF, Yin RX, Cao XL et al (2013) Scavenger receptor class B type 1 gene rs5888 single nucleotide polymorphism and the risk of coronary artery disease and ischemic stroke: A case-control study. Int J Med Sci 10(12):1771–1777. https://doi.org/10.7150/ijms.7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goodarzynejad H, Boroumand M, Behmanesh M, Ziaee S, Jalali A (2016) The rs5888 single nucleotide polymorphism in scavenger receptor class B type 1 (SCARB1) gene and the risk of premature coronary artery disease: A case-control study. Lipids Health Dis 15:7. https://doi.org/10.1186/s12944-016-0176-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ayhan H, Gormus U, Isbir S, Yilmaz SG, Isbir T (2017) SCARB1 gene polymorphisms and HDL subfractions in coronary artery disease. In Vivo 31(5):873–876

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng TT, Tang DJ, Ye YX, Su J, Jiang H (2017) Influence of SCARB1 gene SNPs on serum lipid levels and susceptibility to coronary heart disease and cerebral infarction in a Chinese population. Gene 626:319–325. https://doi.org/10.1016/j.gene.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Xu W, Li X et al (2008) Association between PPARGC1A gene polymorphisms and coronary artery disease in a Chinese population. Clin Exp Pharmacol Physiol 35(10):1172–1177. https://doi.org/10.1111/j.1440-1681.2008.04988.x

    Article  CAS  PubMed  Google Scholar 

  55. Nikitin AG, Chistiakov DA, Minushkina LO, Zateyshchikov DA, Nosikov VV (2010) Association of the CYBA, PPARGC1A, PPARG3, and PPARD gene variants with coronary artery disease and metabolic risk factors of coronary atherosclerosis in a Russian population. Heart Vessels 25(3):229–236. https://doi.org/10.1007/s00380-009-1159-9

    Article  PubMed  Google Scholar 

  56. Yongsakulchai P, Settasatian C, Settasatian N et al (2016) Association of combined genetic variations in PPARgamma, PGC-1alpha, and LXRalpha with coronary artery disease and severity in Thai population. Atherosclerosis 248:140–148. https://doi.org/10.1016/j.atherosclerosis.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  57. Munafò MR, Clark TG, Flint J (2004) Assessing publication bias in genetic association studies: Evidence from a recent meta-analysis. Psychiatry Res 129(1):39–44

    Article  Google Scholar 

  58. Leviev I, James RW (2000) Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler Thromb Vasc Biol 20(2):516–521

    Article  CAS  Google Scholar 

  59. Suehiro T, Nakamura T, Inoue M, Shiinoki T, Ikeda Y, Kumon Y, Shindo M, Tanaka H, Hashimoto K (2000) A polymorphism upstream from the human paraoxonase gene and its association with PON1 expression. Atherosclerosis 150(2):295–298

    Article  CAS  Google Scholar 

  60. Brophy VH, Jampsa RL, Clendenning JB, McKinstry LA, Jarvik GP, Furlong CE (2001) Effects of 5′ regulatory-region polymorphisms on paraoxonase-gene(PON1) expression. Am J Hum Genet 68(6):1428–1436

    Article  CAS  Google Scholar 

  61. deLemos AS, Wolfe ML, Long CJ, Sivapackianathan R, Rader DJ (2002) Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation 106(11):1321–1326

    Article  CAS  Google Scholar 

  62. Kuehl BL, Paterson JWE, Peacock JW, Paterson MC, Rauth AM (1995) Presence of a heterozygous substitution and its relationship to DTdiaphorase activity. Br J Cancer 72(3):555–561

    Article  CAS  Google Scholar 

  63. Moran JL, Siegel D, Ross D (1999) A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc Natl Acad Sci USA 96(14):8150–8155

    Article  CAS  Google Scholar 

  64. Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, Christenson LK, Rodriguez A (2010) A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atherosclerosis 210(1):177–182

    Article  CAS  Google Scholar 

  65. Muller YL, Bogardus C, Pedersen O, Baier L (2003) A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes 52(3):895–898

    Article  Google Scholar 

  66. Xie X, Shi X, Xun X, Rao L (2017) Association between microRNA polymorphisms and coronary heart disease: A meta-analysis. Herz 42(6):593–603. https://doi.org/10.1007/s00059-016-4495-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Q. Du and Q. Li conceived and designed the experiments. Q. Li performed the experiments. Q. Li and Q. Du analyzed the data.

Corresponding author

Correspondence to Q. Du.

Ethics declarations

Conflict of interest

Q. Li and Q. Du declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Caption Electronic Supplementary Material

59_2019_4806_MOESM1_ESM.tif

Figure S1. A. Sensitivity analysis of PON1 -108C/T polymorphism and CHD risk in the overall analysis under homozygote comparison. B. Sensitivity analysis of PON1 -108C/T polymorphism and CHD risk in the overall analysis under heterozygote comparison

59_2019_4806_MOESM2_ESM.tif

Figure S2. A. Sensitivity analysis of PON1 -162G/A polymorphism and CHD risk in the overall analysis under homozygote comparison. B. Sensitivity analysis of PON1 -162G/A polymorphism and CHD risk in the overall analysis under heterozygote comparison

59_2019_4806_MOESM3_ESM.doc

Supplementary Table 1. Results of Newcastle–Ottawa scale (NOS) assessment for the included studies and full electronic search strategy for electronic databases

PRISMA 2009 Checklist

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Du, Q. Associations between nine candidate genetic polymorphisms with coronary heart disease. Herz 45 (Suppl 1), 15–28 (2020). https://doi.org/10.1007/s00059-019-4806-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-4806-7

Keywords

Schlüsselwörter

Navigation