Skip to main content
Log in

Diagnostic and prognostic biomarkers in acute myocarditis

Interleukin-10

Diagnostische und prognostische Biomarker bei akuter Myokarditis

Interleukin-10

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Acute myocarditis is a major inflammatory heart disease with a variety of clinical courses from the acute to chronic phases represented by unexpected circulatory deterioration during hospitalization and progression to dilated cardiomyopathy. Predicting these disease courses is important for patient management. However, biomarkers have not been fully investigated. In addition, clinical profiles including symptoms, serological data, and electrocardiographic findings in acute myocarditis often mimic more common disorders such as coronary artery disease, which have reduced the diagnostic accuracy of acute myocarditis. These issues hamper the development of safer and earlier therapeutic interventions specific for acute myocarditis. Against this background, identifying simple prognostic and diagnostic biomarkers would contribute dramatically to the improvement in outcomes. Interleukin-10 may be a strong candidate for an excellent biomarker.

Zusammenfassung

Die akute Myokarditis ist eine schwere inflammatorische Herzerkrankung. Ihr klinischer Verlauf ist variabel, er reicht von akuten bis zu chronischen Phasen, in denen es während der Hospitalisierung zu unerwarteten Verschlechterungen der Herz-Kreislauf-Situation kommt und zum Progress in eine dilatative Kardiomyopathie. Den Verlauf der Erkrankung zu prognostizieren ist wichtig für das Patientenmanagement. Doch Biomarker sind noch nicht vollständig erforscht. Zudem können klinische Profile (u. a. Symptome, serologische und elektrokardiographische Befunde) bei der akuten Myokarditis häufiger auftretende Störungen imitieren (z. B. eine koronare Herzerkrankung), daher ist die diagnostische Treffsicherheit verringert. Diese Aspekte machen die Entwicklung von sichereren und früher einzusetzenden therapeutischen Interventionen bei akuter Myokarditis problematisch. Daher würde die Identifikation von einfachen prognostischen und diagnostischen Biomarkern in hohem Maße zur Verbesserung des Outcome beitragen; Interleukin-10 scheint ein viel versprechender Kandidat zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CRP:

C-reactive protein

IFN:

Interferon

IL:

Interleukin

TNF:

Tumor necrosis factor

References

  1. Lieberman EB, Hutchins GM, Herskowitz A et al (1991) Clinicopathologic description of myocarditis. J Am Coll Cardiol 18:1617–1626

    Article  PubMed  CAS  Google Scholar 

  2. McCarthy RE 3rd, Boehmer JP, Hruban RH et al (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. New Engl J Med 342:690–695

    Article  PubMed  Google Scholar 

  3. Okura Y, Yamamoto T, Goto S et al (1997) Characterization of cytokine and iNOS mRNA expression in situ during the course of experimental autoimmune myocarditis in rats. J Mol Cell Cardiol 29:491–502

    Article  PubMed  CAS  Google Scholar 

  4. Glück B, Schmidtke M, Merkle I et al (2001) Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice. J Mol Cell Cardiol 33:1615–1626

    Article  PubMed  Google Scholar 

  5. Schmidtke M, Glück B, Merkle I et al (2000) Cytokine profiles in heart, spleen, and thymus during the acute stage of experimental coxsackievirus B3-induced chronic myocarditis. J Med Virol 61:518–526

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe K, Nakazawa M, Fuse K et al (2001) Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation 104:1098–1100

    Article  PubMed  CAS  Google Scholar 

  7. Nishio R, Matsumori A, Shioi T et al (1999) Treatment of experimental viral myocarditis with interleukin-10. Circulation 100:1102–1108

    Article  PubMed  CAS  Google Scholar 

  8. Shioi T, Matsumori A, Nishio R et al (1997) Protective role of interleukin-12 in viral myocarditis. J Mol Cell Cardiol 29:2327–2334

    Article  PubMed  CAS  Google Scholar 

  9. Nishii M, Inomata T, Takehana H et al (2004) Serum levels of interleukin-10 on admission as a prognostic predictor of human fulminant myocarditis. J Am Coll Cardiol 44:1292–1297

    Article  PubMed  CAS  Google Scholar 

  10. Cooper LT Jr, Hare JM, Tazelaar HD et al (2008) Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol 102:1535–1539

    Article  PubMed  CAS  Google Scholar 

  11. Schultheiss HP, Kühl U, Cooper LT (2011) The management of myocarditis. Eur Heart J 32:2616–2625

    Article  PubMed  Google Scholar 

  12. Kato S, Morimoto S, Hiramitsu S et al (1999) Use of percutaneous cardiopulmonary support of patients with fulminant myocarditis and cardiogenic shock for improving prognosis. Am J Cardiol 83:623–625

    Article  PubMed  CAS  Google Scholar 

  13. Kohno K, Aoyama N, Shimohama T et al (2000) Resuscitation from fulminant myocarditis associated with refractory ventricular fibrillation. Jpn Circ J 64:139–143

    Article  PubMed  CAS  Google Scholar 

  14. Acker MA (2001) Mechanical circulatory support for patients with acute fulminant myocarditis. Ann Thorac Surg 71:73–76

    Article  Google Scholar 

  15. Aoyama N, Izumi T, Hiramori K et al (2002) National survey of fulminant myocarditis in Japan: therapeutic guidelines and long-term prognosis of using percutaneous cardiopulmonary support for fulminant myocarditis. Circ J 65:133–144

    Article  Google Scholar 

  16. Oshima K, Kunimoto F, Hinohara H et al (2008) Fulminant myocarditis treated with percutaneous cardiopulmonary support system (PCPS). Ann Thorac Cardiovasc Surg 14:75–80

    PubMed  Google Scholar 

  17. Hühl U, Noutsias M, Seeberg B, Schultheiss HP (1996) Immunohistochemical evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300

    Article  Google Scholar 

  18. Jin O, Sole MJ, Butany JW et al (1990) Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation 82:8–16

    Article  PubMed  CAS  Google Scholar 

  19. Lauer B, Padberg K, Schultheiss HP, Strauer BE (1995) Autoantibodies against cardiac myosin in patients with myocarditis and dilated cardiomyopathy. Z Kardiol 84:301–310

    PubMed  CAS  Google Scholar 

  20. Maisch B, Deeg P, Liebau G, Kochsiek K (1983) Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. Am J Cardiol 52:1072–1078

    Article  PubMed  CAS  Google Scholar 

  21. Nishii M, Inomata T, Takehana H et al (2008) Prognostic utility of B-type natriuretic peptide assessment in stable low-risk outpatients with nonischemic cardiomyopathy after decompensated heart failure. J Am Coll Cardiol 51:2329–2335

    Article  PubMed  CAS  Google Scholar 

  22. Kawahara C, Tsutamoto T, Nishiyama K et al (2011) Prognostic role of high-sensitivity cardiac troponin T in patients with nonischemic dilated cardiomyopathy. Circ J 75:656–661

    Article  PubMed  Google Scholar 

  23. Fuse K, Kodama M, Okura Y et al (2000) Predictors of disease course in patients with acute myocarditis. Circulation 102:2829–2835

    Article  PubMed  CAS  Google Scholar 

  24. Starling RC, Galbraith TA, Baker PB et al (1988) Successful management of acute myocarditis with biventricular assist devices and cardiac transplantation. Am J Cardiol 62:341–343

    Article  PubMed  CAS  Google Scholar 

  25. Gojo S, Kyo S, Sato H et al (2003) Successful LVAS and RVAS-ECMO support in a patient with fulminant myocarditis who failed to recover from ventricular fibrillation with PCPS and IABP. J Thorac Cardiovasc Surg 126:885–886

    Article  PubMed  Google Scholar 

  26. Godeny EK, Gauntt CJ (1987) Murine natural killer cells limit coxsackievirus B3 replication. J Immunol 139:913–918

    PubMed  CAS  Google Scholar 

  27. Hofmann P, Schmidtke M, Stelzer A, Gemsa D (2001) Suppression of Proinflammatory cytokines and induction of IL-10 in human monocytes after coxsackievirus B3 infection. J Med Virol 64:487–498

    Article  PubMed  CAS  Google Scholar 

  28. Salek-Ardakani S, Arrand JR, Mackett M (2002) Epstein-Barr virus encoded interleukin-10 inhibits HLA-class 1, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 304:342–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Postgraduate Research Project at Kitasato University and a Grant for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 20311954). The authors thank Guy Harris for restyling the manuscript. We thank Robert E. Brandt, Founder, CEO, and CME, MedEd Japan, for editing the manuscript.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Izumi MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, T., Nishii, M. Diagnostic and prognostic biomarkers in acute myocarditis. Herz 37, 627–631 (2012). https://doi.org/10.1007/s00059-012-3661-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3661-6

Keywords

Schlüsselwörter

Navigation