Skip to main content
Log in

Assessment of the relationship between fractal analysis of mandibular bone and orthodontic treatment duration

A retrospective study

Evaluierung der Beziehung zwischen der Fraktalanalyse des Unterkieferknochens und der Dauer der kieferorthopädischen Behandlung

Eine retrospektive Studie

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

This retrospective study aimed to determine whether a correlation exists between the fractal dimension value and overall orthodontic treatment duration in children and young adults.

Methods

The study included a total of 643 patients (age: 10–25 years) who received orthodontic treatment between January 2015 and March 2020. Patient records and pretreatment panoramic radiographs were evaluated. The regions of interest selected for calculating fractal dimension were the bilateral mental foramen regions of the mandible. Fractal dimension was set in relation to orthodontic treatment duration using a linear regression model which was also adjusted for potential confounding variables. Total treatment duration was the outcome variable of interest used as a continuous variable. The predictor variables of interest included age, gender, type of dental and skeletal malocclusion, vertical growth pattern, extraction type, and fractal dimension.

Results

The mean age, treatment duration, and fractal dimension were 14.56 years, 27.01 months, and 1.23 mm, respectively. Multiple linear regression analysis showed that the fractal dimension had a significant influence on overall treatment duration (P < 0.001). From the other variables, Angle class II malocclusion significantly influenced treatment duration (P < 0.01), age showed a significant negative correlation with treatment duration (P < 0.01), and treatment duration significantly increased for patients with tooth extractions (P < 0.001).

Conclusion

There was a negative correlation between fractal dimensions at the mandibular mental region and total orthodontic treatment duration. Fractal dimension analysis may help to understand physiologic features of alveolar bone and predict orthodontic tooth movement.

Zusammenfassung

Zielsetzung

In dieser retrospektiven Studie sollte untersucht werden, ob ein Zusammenhang zwischen dem Fraktalwert und der Gesamtdauer der kieferorthopädischen Behandlung bei Kindern und jungen Erwachsenen besteht.

Methoden

Die Studie umfasste insgesamt 643 Patienten (Alter: 10-25 Jahre), die zwischen Januar 2015 und März 2020 kieferorthopädisch behandelt wurden. Ausgewertet wurden die Patientenakten und die Panoramaröntgenbilder vor der Behandlung. Die für die Berechnung der fraktalen Dimension ausgewählten ROIs („regions of interest“) waren die Regionen um die Foramina mentalia. Die fraktale Dimension wurde mit Hilfe eines auch für potenzielle Störvariablen adjustierten linearen Regressionsmodells in Beziehung zur kieferorthopädischen Behandlungsdauer gesetzt. Die Gesamtbehandlungsdauer war die interessierende Ergebnisvariable, die als kontinuierliche Variable verwendet wurde. Zu den interessierenden Prädiktorvariablen gehörten Alter, Geschlecht, Art der dentalen und skelettalen Malokklusion, vertikales Wachstumsmuster, Extraktionstyp und fraktale Dimension.

Ergebnisse

Das Durchschnittsalter, die Behandlungsdauer und die Fraktaldimension betrugen 14,56 Jahre, 27,01 Monate und 1,23 mm. Die multiple lineare Regressionsanalyse zeigte, dass die Fraktaldimension einen signifikanten Einfluss auf die Gesamtbehandlungsdauer hatte (p < 0,001). Von den anderen Variablen beeinflusste die Angle-Klasse-II-Malokklusion die Behandlungsdauer signifikant (p < 0,01), das Alter wies eine signifikante negative Korrelation mit der Behandlungsdauer auf (p < 0,01) und die Behandlungsdauer nahm bei Patienten mit Zahnextraktionen signifikant zu (p < 0,001).

Schlussfolgerung

Es bestand eine negative Korrelation zwischen den Fraktaldimensionen in der mandibulären mentalen Region und der gesamten kieferorthopädischen Behandlungsdauer. Die Analyse der Fraktalwerte kann helfen, die physiologischen Eigenschaften des Alveolarknochens zu verstehen und kieferorthopädische Zahnbewegungen vorherzusagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  1. Fink DF, Smith RJ (1992) The duration of orthodontic treatment. Am J Orthod Dentofacial Orthop 102:45–51

    Article  Google Scholar 

  2. Landin-Ramos M, Yadav S, Gandhi V, Upadhyay M, Tadinada A (2020) Is there a relationship between mandibular cortical bone thickness and orthodontic treatment time? Angle Orthod 90:794–800

    Article  Google Scholar 

  3. Mavreas D, Athanasiou AE (2008) Factors affecting the duration of orthodontic treatment: a systematic review. Eur J Orthod 30:386–395

    Article  Google Scholar 

  4. Kafle D, Mishra RK, Mahto RK, Luintel S, Shrestha S, Sangroula S (2019) Comparison of orthodontic treatment duration among extraction versus non extraction therapies. Orthod J Nepal 9:57–60

    Article  Google Scholar 

  5. Tsichlaki A, Chin SY, Pandis N, Fleming PS (2016) How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofacial Orthop 149:308–318

    Article  Google Scholar 

  6. Abbing A, Koretsi V, Eliades T, Papageorgiou SN (2020) Duration of orthodontic treatment with fixed appliances in adolescents and adults: a systematic review with meta-analysis. Prog Orthod 21:1–11

    Article  Google Scholar 

  7. Kaur H, El-Bialy T (2020) Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS). J Clin Med 9:1303

    Article  Google Scholar 

  8. Hassan AH, Al-Fraidi AA, Al-Saeed SH (2010) Corticotomy-assisted orthodontic treatment. Open Dent J 4:159

    Article  Google Scholar 

  9. İşeri H, Kişnişci R, Bzizi N, Tüz H (2005) Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am J Orthod Dentofacial Orthop 127:533–541

    Article  Google Scholar 

  10. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K et al (2008) Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 133:572–583

    Article  Google Scholar 

  11. Showkatbakhsh R, Jamilian A, Showkatbakhsh M (2010) The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod 11:e52–e6

    PubMed  Google Scholar 

  12. Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H et al (2010) Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase‑9, cathepsin K, and alpha (v) beta (3) integrin in rats. Eur J Orthod 32:131–139

    Article  Google Scholar 

  13. Cesur E, Bayrak S, Kursun-Çakmak EŞ, Arslan C, Köklü A, Orhan K (2020) Evaluating the effects of functional orthodontic treatment on mandibular osseous structure using fractal dimension analysis of dental panoramic radiographs. Angle Orthod 90:783–793

    Article  Google Scholar 

  14. Arsan B, Köse TE, Çene E, Özcan İ (2017) Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disorders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 123:382–391

    Article  Google Scholar 

  15. Amuk M, Gul Amuk N, Yılmaz S (2022) Treatment and posttreatment effects of Herbst appliance therapy on trabecular structure of the mandible using fractal dimension analysis. Eur J Orthod 44(2):125–133. https://doi.org/10.1093/ejo/cjab048

    Article  PubMed  Google Scholar 

  16. Korkmaz YN, Arslan S (2021) Evaluation of the trabecular structure of the mandibular condyles by fractal analysis in patients with different dentofacial skeletal patterns. Aust Orthod J 37:93–99

    Google Scholar 

  17. Coşgunarslan A, Canger EM, Çabuk DS, Kış HC (2020) The evaluation of the mandibular bone structure changes related to lactation with fractal analysis. Oral Radiol 36:238–247

    Article  Google Scholar 

  18. Coşgunarslan A, Canger EM, Soydan Çabuk D (2021) Proton pump inhibitors and mandibular bone quality: a preliminary study. Dentomaxillofac Radiol 49:20200505

    Article  Google Scholar 

  19. Demirbaş AK, Ergün S, Güneri P, Aktener BO, Boyacıoğlu H (2008) Mandibular bone changes in sickle cell anemia: fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:e41–e8

    Article  Google Scholar 

  20. Eninanç İ, Yeler DY, Çınar Z (2021) Investigation of mandibular fractal dimension on digital panoramic radiographs in bruxist individuals. Oral Surg Oral Med Oral Pathol Oral Radiol 131:600–609

    Article  Google Scholar 

  21. Kim J‑Y, Nah K‑S (2007) Prediction of osteoporosis using fractal analysis et cetera on panoramic radiographs. Imaging Sci Dent 37:79–82

    Google Scholar 

  22. Akbulut S, Bayrak S, Korkmaz YN (2020) Prediction of rapid palatal expansion success via fractal analysis in hand-wrist radiographs. Am J Orthod Dentofacial Orthop 158:192–198

    Article  Google Scholar 

  23. White SC, Rudolph DJ (1999) Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:628–635

    Article  Google Scholar 

  24. Järvinen S, Widström E, Raitio M (2004) Factors affecting the duration of orthodontic treatment in children. A retrospective study. Swed Dent J 28:93–100

    PubMed  Google Scholar 

  25. Kang D, Kwak K‑H, Kim S‑S, Park S‑B, Son W‑S, Kim Y‑I (2017) Application of fractal analysis of the midpalatal suture for estimation of pubertal growth spurts. Oral Radiol 33:199–203

    Article  Google Scholar 

  26. Kwak KH, Kim SS, Kim Y‑I, Kim Y‑D (2016) Quantitative evaluation of midpalatal suture maturation via fractal analysis. Korean J Orthod 46:323–330

    Article  Google Scholar 

  27. Kocak ATÖ, Bulut DG (2021) Measurement of the trabecular bone structure of the TMJ region in patients with transverse maxillary deficiency: a CBCT fractal analysis study. Oral Surg Oral Med Oral Pathol Oral Radiol 132:352–360

    Article  Google Scholar 

  28. Grewe JM, Hermanson PC (1973) Influence of severity of malocclusion on the duration of orthodontic treatment. Am J Orthod 63:533–536

    Article  Google Scholar 

  29. Furquim BD, Janson G, Cope LCC, Freitas KMS, Henriques JFC (2018) Comparative effects of the mandibular protraction appliance in adolescents and adults. Dental Press J Orthod 23:63–72

    Article  Google Scholar 

  30. Schubert A, Jäger F, Maltha JC, Bartzela TN (2020) Age effect on orthodontic tooth movement rate and the composition of gingival crevicular fluid. J Orofac Orthop 81:113–125

    Article  Google Scholar 

  31. Bhattarai P, Shrestha RM (2011) Comparative study of duration of orthodontic treatment among Nepalese adolescent and adult patients. Orthod J Nepal 1:28–30

    Article  Google Scholar 

  32. Sachdeva RC, Aranha SL, Egan ME, Gross HT, Sachdeva NS, Frans Currier G et al (2012) Treatment time: SureSmile vs conventional. Orthodontics 13:72

    PubMed  Google Scholar 

  33. Cassina C, Papageorgiou SN, Eliades T (2018) Open versus closed surgical exposure for permanent impacted canines: a systematic review and meta-analyses. Eur J Orthod 40:1–10

    Article  Google Scholar 

  34. Koutzoglou SI, Kostaki A (2013) Effect of surgical exposure technique, age, and grade of impaction on ankylosis of an impacted canine, and the effect of rapid palatal expansion on eruption: a prospective clinical study. Am J Orthod Dentofacial Orthop 143:342–352

    Article  Google Scholar 

  35. Colella C, Izen J, McGrogan R, Obrien K, Shnorhokian H, Vayda D et al (1994) Duration of treatment: class I vs. class II malocclusions. J Dent Res 73:364

    Google Scholar 

  36. Esteves de Oliveira Melo AC, Carneiro LOT, Pontes LF, Cecim RL, Rufino de Mattos JN, Normando D (2013) Factors related to orthodontic treatment time in adult patients. Dental Press J Orthod 18:59–63

    Article  Google Scholar 

  37. Popowich K, Flores-Mir C, Nebbe B, Heo G, Major PW (2006) Comparison of class I and class II treatment duration among three different orthodontic practices. Semin Orthod. https://doi.org/10.4103/2321-4848.113575

    Article  Google Scholar 

  38. Vig KW, Weyant R, Vayda D, O’Brien K, Bennett E (1998) Orthodontic process and outcome: efficacy studies-strategies for developing process and outcome measures: a new era in orthodontics. Clin Orthod Res 1:147–155

    Article  Google Scholar 

  39. Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88:597–608

    Article  Google Scholar 

  40. Misawa-Kageyama Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T et al (2007) Histomorphometric study on the effects of age on orthodontic tooth movement and alveolar bone turnover in rats. Eur J Oral Sci 115:124–130

    Article  Google Scholar 

  41. Wagle N, Do NN, Yu J, Borke JL (2005) Fractal analysis of the PDL-bone interface and implications for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 127:655–661

    Article  Google Scholar 

  42. Bollen A, Taguchi A, Hujoel P, Hollender L (2001) Fractal dimension on dental radiographs. Dentomaxillofac Radiol 30:270–275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Köse.

Ethics declarations

Conflict of interest

E. Köse, Y. Ay Ünüvar and M. Uzun declare that they have no competing interests.

Ethical standards

Ethical committee approval (2021/04-02) was obtained from the Aydın Adnan Menderes University, Faculty of Dentistry, Ethics Committee of Clinical Research for assessing patient records from the Department of Orthodontics. Informed consent was obtained from all participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The study was presented as an oral presentation at 17th Turkish Orthodontic Society International Virtual Congress, March 12–14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, E., Ay Ünüvar, Y. & Uzun, M. Assessment of the relationship between fractal analysis of mandibular bone and orthodontic treatment duration. J Orofac Orthop 83 (Suppl 1), 102–110 (2022). https://doi.org/10.1007/s00056-022-00406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-022-00406-6

Keywords

Schlüsselwörter

Navigation