Skip to main content
Log in

Age effect on orthodontic tooth movement rate and the composition of gingival crevicular fluid

A literature review

Einfluss des Alters auf die Geschwindigkeit der kieferorthopädischen Zahnbewegung und die Zusammensetzung des gingivalen Sulkusfluids

Ein Literaturreview

  • Systematic Reviews and Meta-Analyses
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

To evaluate and form a comprehensive understanding of the effect of patient age on bone remodeling and consequently on the rate of orthodontic tooth movement (OTM).

Methods

A systematic search in PubMed and Embase from 1990 to December 2017 was performed and completed by a hand search. Prospective clinical trials which investigated the rate of OTM and/or studies assessing age-related changes in the composition of gingival crevicular fluid (GCF) in older compared to younger study groups were included. Study selection, data extraction and risk of bias were assessed by two authors.

Results

Eight studies fulfilled the inclusion criteria. Among them, four evaluated the rate of OTM and six investigated mediators in the GCF (prostaglandin E2, interleukin [IL]-1β, IL‑6, IL‑1 receptor antagonist, receptor activator of nuclear factor kappa‑Β ligand, osteoprotegerin, granulocyte–macrophage colony-stimulating factor, pentraxin 3). Patient age ranged between 16 and 43 years for older and <16 years for younger groups. In most of the studies, the younger patients showed faster OTM in the first phase of treatment and more pronounced cytokine levels. Older patients had a delayed reaction to orthodontic forces.

Conclusion

The small number of included studies and large heterogeneity in study design give limited clinical evidence that the older patients are less responsive to orthodontic force in comparison to younger patients. The initial cellular response to orthodontic force is expected to be delayed in older patients. Control intervals during orthodontic treatment should be adjusted to the individual’s treatment response.

Zusammenfassung

Ziel

Das Ziel dieses Reviews war die Einschätzung und Entwicklung eines umfassenden Verständnisses des Einflusses des Patientenalters auf den Knochenumbau und folglich auf die Geschwindigkeit der kieferorthopädischen Zahnbewegung (OTM).

Methoden

Es wurde eine systematische Suche in PubMed und Embase im Zeitraum von 1990 bis Dezember 2017 durchgeführt, ergänzt durch eine Handsuche. Prospektive klinische Studien zum Vergleich der Geschwindigkeit der OTM und/oder Studien zu altersabhängigen Veränderungen in der Zusammensetzung des gingivalen Sulkusfluids (GCF) bei älteren und jüngeren Probandengruppen wurden inkludiert. Die Studienauswahl, Datenextraktion und Bewertung des Risikos für Bias erfolgte durch 2 der Studienautoren.

Ergebnisse

Acht Studien erfüllten die Einschlusskriterien. Vier von ihnen ermittelten die Geschwindigkeit der kieferorthopädischen Zahnbewegung und 6 untersuchten Mediatoren im GCF (Prostaglandin E2, Interleukin [IL]-1β, IL‑6, IL-1-Rezeptorantagonist, „receptor activator of nuclear factor κ‑Β ligand“, Osteoprotegerin, „granulocyte-macrophage colony-stimulating factor“, Pentraxin 3). Die ältere Probandengruppe war 1643 Jahre alt, die jüngeren Patienten wiesen ein Alter von <16 Jahren auf. Bei den jüngeren Patienten wurden in der Mehrzahl der Studien eine initial schnellere Zahnbewegung und höhere Zytokinspiegel festgestellt. Die älteren Probanden zeigten eine verzögerte Reaktion auf orthodontische Kräfte.

Schlussfolgerung

Aufgrund der geringen Studienzahl und der Heterogenität der Studiendesigns ist die klinische Evidenz für eine verminderte Reaktion auf kieferorthopädische Kräfte bei älteren im Vergleich zu jüngeren Patienten eingeschränkt. Die initialen zellulären Reaktionen scheinen bei älteren Patienten verzögert abzulaufen. Kontrollintervalle während der kieferorthopädischen Behandlung sollten an das individuelle Reaktionsverhalten angepasst werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2

Similar content being viewed by others

References

  1. Cedro MK, Moles DR, Hodges SJ (2010) Adult orthodontics—who’s doing what? J Orthod 37(2):107–117

    PubMed  Google Scholar 

  2. Christensen L, Luther F (2015) Adults seeking orthodontic treatment: expectations, periodontal and TMD issues. Br Dent J 218(3):111–117

    PubMed  Google Scholar 

  3. Dyer GS, Harris EF, Vaden JL (1991) Age effects on orthodontic treatment: adolescents contrasted with adults. Am J Orthod Dentofacial Orthop 100(6):523–530

    PubMed  Google Scholar 

  4. Jäger A (1996) Histomorphometric study of age-related changes in remodelling activity of human desmodontal bone. Kaibogaku Zasshi 189(Pt 2):257–264

    Google Scholar 

  5. Cei S, Kandler B, Fugl A, Gabriele M, Hollinger JO, Watzek G, Gruber R (2006) Bone marrow stromal cells of young and adult rats respond similarly to platelet-released supernatant and bone morphogenetic protein‑6 in vitro. J Periodontol 77(4):699–706

    PubMed  Google Scholar 

  6. Norton LA (1988) The effect of aging cellular mechanisms on tooth movement. Dent Clin North Am 32(3):437–446

    PubMed  Google Scholar 

  7. Krieger E, Hornikel S, Wehrbein H (2013) Age-related changes of fibroblast density in the human periodontal ligament. Head Face Med. https://doi.org/10.1186/1746-160X-9-22

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luder HU (1990) Anatomy and physiology of the periodontium in adults under the conditions of orthodontic tooth movement. Dtsch Zahnärztl Z 45(2):74–77

    PubMed  Google Scholar 

  9. Ohiomoba H, Sonis A, Yansane A, Friedland B (2017) Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. Am J Orthod Dentofacial Orthop 151(1):82–91

    PubMed  Google Scholar 

  10. Liu CC, Baylink DJ, Wergedal JE, Allenbach HM, Sipe J (1977) Pore size measurements and some age-related changes in human alveolar bone and rat femur. J Dent Res 56(2):143–150

    PubMed  Google Scholar 

  11. Jäger A, Radlanski RJ (1991) Alveolar bone remodelling following orthodontic tooth movement in aged rats. An animal experimental study. Dtsch Stomatol 41(11):399–406

    PubMed  Google Scholar 

  12. Grant D, Bernick S (1972) The periodontium of ageing humans. J Periodontol 43(11):660–667

    PubMed  Google Scholar 

  13. Belting CM, Schour I, Weinmann JP, Shepro MJ (1953) Age changes in the periodontal tissues of the rat molar. J Dent Res 32(3):332–353

    PubMed  Google Scholar 

  14. Haim G, Baumgartel R (1968) Age-related changes in the periodontium (desmodont). Dtsch Zahnärztl Z 23(3):340–344

    PubMed  Google Scholar 

  15. Klingsberg J, Butcher EO (1960) Comparative histology of age changes in oral tissues of rat, hamster, and monkey. J Dent Res 39:158–169

    PubMed  Google Scholar 

  16. Levy BM, Dreizen S, Bernick S (1972) Effect of aging on the marmoset periodontium. J Oral Pathol 1(2):61–65

    PubMed  Google Scholar 

  17. Severson JA, Moffett BC, Kokich V, Selipsky H (1978) A histologic study of age changes in the adult human periodontal joint (ligament). J Periodontol 49(4):189–200

    PubMed  Google Scholar 

  18. Tonna EA (1973) Histological age changes associated with mouse parodontal tissues. J Gerontol 28(1):1–12

    PubMed  Google Scholar 

  19. Reitan K (1957) Some factors determining the evaluation of forces in orthodontics. Am J Orthod 43(1):32–45

    Google Scholar 

  20. Misawa Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, Ozawa H, Sahara N (2007) Effect of age on alveolar bone turnover adjacent to maxillary molar roots in male rats: a histomorphometric study. Arch Oral Biol 52(1):44–50

    PubMed  Google Scholar 

  21. Ren Y, Maltha JC, Van’t Hof MA, Von Den Hoff JW, Kuijpers-Jagtman AM, Zhang D (2002) Cytokine levels in crevicular fluid are less responsive to orthodontic force in adults than in juveniles. J Clin Periodontol 29(8):757–762

    PubMed  Google Scholar 

  22. Kavadia-Tsatala S, Kaklamanos EG, Tsalikis L (2002) Effects of orthodontic treatment on gingival crevicular fluid flow rate and composition: clinical implications and applications. Int J Adult Orthodon Orthognath Surg 17(3):191–205

    PubMed  Google Scholar 

  23. Abiko Y, Shimizu N, Yamaguchi M, Suzuki H, Takiguchi H (1998) Effect of aging on functional changes of periodontal tissue cells. Ann Periodontol 3(1):350–369

    PubMed  Google Scholar 

  24. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y (1999) Effect of cellular aging on the induction of cyclooxygenase‑2 by mechanical stress in human periodontal ligament cells. Mech Ageing Dev 108(2):151–163

    PubMed  Google Scholar 

  25. Mayahara K, Kobayashi Y, Takimoto K, Suzuki N, Mitsui N, Shimizu N (2007) Aging stimulates cyclooxygenase‑2 expression and prostaglandin E‑2 production in human periodontal ligament cells after the application of compressive force. J Periodontal Res 42(1):8–14

    PubMed  Google Scholar 

  26. Bridges T, King G, Mohammed A (1988) The effect of age on tooth movement and mineral density in the alveolar tissues of the rat. Am J Orthod Dentofacial Orthop 93(3):245–250

    PubMed  Google Scholar 

  27. Kabasawa M, Ejiri S, Hanada K, Ozawa H (1996) Effect of age on physiologic and mechanically stressed rat alveolar bone: a cytologic and histochemical study. Int J Adult Orthodon Orthognath Surg 11(4):313–327

    PubMed  Google Scholar 

  28. Kyomen S, Tanne K (1997) Influences of aging changes in proliferative rate of PDL cells during experimental tooth movement in rats. Angle Orthod 67(1):67–72

    PubMed  Google Scholar 

  29. Misawa-Kageyama Y, Kageyama T, Moriyama K, Kurihara S, Yagasaki H, Deguchi T, Ozawa H, Sahara N (2007) Histomorphometric study on the effects of age on orthodontic tooth movement and alveolar bone turnover in rats. Eur J Oral Sci 115(2):124–130

    PubMed  Google Scholar 

  30. Ren Y, Kuijpers-Jagtman AM, Maltha JC (2005) Immunohistochemical evaluation of osteoclast recruitment during experimental tooth movement in young and adult rats. Arch Oral Biol 50(12):1032–1039

    PubMed  Google Scholar 

  31. Ren Y, Maltha JC, Stokroos I, Liem RS, Kuijpers-Jagtman AM (2008) Effect of duration of force application on blood vessels in young and adult rats. Am J Orthod Dentofacial Orthop 133(5):752–757

    PubMed  Google Scholar 

  32. Ren Y, Maltha JC, Van’t Hof MA, Kuijpers-Jagtman AM (2003) Age effect on orthodontic tooth movement in rats. J Dent Res 82(1):38–42

    PubMed  Google Scholar 

  33. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    PubMed  PubMed Central  Google Scholar 

  34. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    PubMed  PubMed Central  Google Scholar 

  35. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282

    Google Scholar 

  36. Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB, Nickel JC (2005) Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofacial Orthop 128(4):483–491

    PubMed  Google Scholar 

  37. Kawasaki K, Takahashi T, Yamaguchi M, Kasai K (2006) Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res 9(3):137–142

    PubMed  Google Scholar 

  38. Nickel JC, Liu H, Marx DB, Iwasaki LR (2014) Effects of mechanical stress and growth on the velocity of tooth movement. Am J Orthod Dentofacial Orthop 145(4 Suppl):S74–S81

    PubMed  Google Scholar 

  39. Dudic A, Giannopoulou C, Kiliaridis S (2013) Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofacial Orthop 143(5):616–621

    PubMed  Google Scholar 

  40. Chibebe PC, Starobinas N, Pallos D (2010) Juveniles versus adults: differences in PGE2 levels in the gingival crevicular fluid during orthodontic tooth movement. Braz Oral Res 24(1):108–113

    PubMed  Google Scholar 

  41. Rody WJ Jr., Wijegunasinghe M, Wiltshire WA, Dufault B (2014) Differences in the gingival crevicular fluid composition between adults and adolescents undergoing orthodontic treatment. Angle Orthod 84(1):120–126

    PubMed  Google Scholar 

  42. Surlin P, Rauten AM, Silosi I, Foia L (2012) Pentraxin‑3 levels in gingival crevicular fluid during orthodontic tooth movement in young and adult patients. Angle Orthod 82(5):833–838

    PubMed  PubMed Central  Google Scholar 

  43. Ren Y, Maltha JC, Kuijpers-Jagtman AM (2003) Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 73(1):86–92

    PubMed  Google Scholar 

  44. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE (2010) Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop 137(4):462–476 (discussion 412A)

    PubMed  Google Scholar 

  45. Van Schepdael A, Vander Sloten J, Geris L (2013) A mechanobiological model of orthodontic tooth movement. Biomech Model Mechanobiol 12(2):249–265

    PubMed  Google Scholar 

  46. Krishnan V, Davidovitch Z (2006) The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res 9(4):163–171

    PubMed  Google Scholar 

  47. Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22(4):343–352

    PubMed  Google Scholar 

  48. Bartzela T, Turp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthod Dentofacial Orthop 135(1):16–26

    PubMed  Google Scholar 

  49. Goldie RS, King GJ (1984) Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 85(5):424–430

    PubMed  Google Scholar 

  50. Bartzela T, Maltha JC (2016) In: Shroff B (ed) Biology of orthodontic tooth movement: current concepts and applications in orthodontic practice. Springer, Cham

    Google Scholar 

  51. Chin KY (2018) The relationship between follicle-stimulating hormone and bone health: alternative explanation for bone loss beyond oestrogen? Int J Med Sci 15(12):1373–1383

    PubMed  PubMed Central  Google Scholar 

  52. Papanek PE (2003) The female athlete triad: an emerging role for physical therapy. J Orthop Sports Phys Ther 33(10):594–614

    PubMed  Google Scholar 

  53. Nakano T, Hotokezaka H, Hashimoto M, Sirisoontorn I, Arita K, Kurohama T, Darendeliler MA, Yoshida N (2014) Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod 84(6):1079–1085

    PubMed  PubMed Central  Google Scholar 

  54. Alikhani M, Lopez JA, Alabdullah H, Vongthongleur T, Sangsuwon C, Alikhani M, Alansari S, Oliveira SM, Nervina JM, Teixeira CC (2016) High-frequency acceleration: therapeutic tool to preserve bone following tooth extractions. J Dent Res 95(3):311–318

    PubMed  Google Scholar 

  55. Hoogeveen EJ, Jansma J, Ren Y (2014) Surgically facilitated orthodontic treatment: a systematic review. Am J Orthod Dentofacial Orthop 145(4 Suppl):S51–64

    PubMed  Google Scholar 

  56. Giannopoulou C, Dudic A, Pandis N, Kiliaridis S (2016) Slow and fast orthodontic tooth movement: an experimental study on humans. Eur J Orthod 38:404–408

    PubMed  Google Scholar 

  57. Grzibovskis M, Urtane I, Pilmane M (2011) Specific signaling molecule expression in periodontal ligaments in different age groups: pilot study. Stomatologija 13(4):117–122

    PubMed  Google Scholar 

  58. Grzibovskis M, Urtane I, Pilmane M, Jankovska I (2011) Specific signaling molecule expressions in the interradicular septum in different age groups. Stomatologija 13:81–86

    PubMed  Google Scholar 

  59. Krieger E, Hornikel S, Wehrbein H (2013) Age-related changes of fibroblast density in the human periodontal ligament. Head Face Med 9:22–25

    PubMed  PubMed Central  Google Scholar 

  60. Tanne K, Yoshida S, Kawata T, Sasaki A, Knox J, Jones ML (1998) An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod 25:109–115

    PubMed  Google Scholar 

  61. Zhang D, Ren Y (2001) Comparison of GCF biochemical components changes during orthodontic tooth movement between children and adults. Zhonghua Kou Qiang Yi Xue Za Zhi 36:219–221

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodosia N. Bartzela MSc, PhD.

Ethics declarations

Conflict of interest

A. Schubert, F. Jäger, J.C. Maltha and T.N. Bartzela declare that they have no competing interests.

Ethical standards

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case. For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, A., Jäger, F., Maltha, J.C. et al. Age effect on orthodontic tooth movement rate and the composition of gingival crevicular fluid. J Orofac Orthop 81, 113–125 (2020). https://doi.org/10.1007/s00056-019-00206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00206-5

Keywords

Schlüsselwörter

Navigation