Skip to main content
Log in

Thermotransduction and heat stress in dental structures during orthodontic debonding

Effectiveness of various cooling strategies

Temperaturweiterleitung und Hitzebelastung dentaler Strukturen im Rahmen des orthodontischen Debondings

Effektivität unterschiedlicher Kühlverfahren

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

Recent studies have indicated possible thermal damage to pulpal tissue during orthodontic debonding. This study aimed to analyze the thermal loads acting upon dental structures and their transfer to the pulp during orthodontic debonding. Specific goals were to analyze temperature changes in local dental tissues, thermotransduction to the pulp cavity, and the effectiveness of common cooling strategies and of simulated intrapulpal circulation.

Materials and methods

Metal brackets were bonded to five extracted human molars and subsequently removed. While a carbide bur was applied to debond the residual composite from the tooth surface, various cooling strategies (no/air/water cooling) were employed with or without simulated intrapulpal circulation, accompanied by temperature measurements with a thermographic infrared camera on the enamel surface and with measuring probes in the pulp cavity. Appropriate evaluation software was used to calculate the enamel-to-pulp temperature gradients and for statistical analysis.

Results

Significant differences in temperature rise and heat development over time, both on the enamel surfaces and in the pulp cavities were found. The mean temperature rises associated with no/air/water cooling were 90.7/46.6/9.2 °C on the enamel surface versus 9/8/4.6 °C inside the pulp. However, thermotransduction from enamel to pulp remained below 10 % of the surface measurements in all groups. Simulated intrapulpal microcirculation was found to significantly reduce intrapulpal temperature levels.

Conclusion

During debonding of residual bracket adhesives, provided that a carbide bur is properly used, our data indicate a low risk of reaching critical intrapulpal temperatures even in the absence of dedicated cooling and no risk if the instrumentation is accompanied by air or water cooling.

Zusammenfassung

Zielsetzung

Aktuelle Studien weisen auf eine Gefahr einer thermischen Schädigung pulpalen Gewebes während des kieferorthopädischen Debondings hin. Ziel der vorliegenden Studie war es, die Temperaturbelastung dentaler Strukturen und deren Transduktion zur Pulpa hin zu analysieren. Hierbei sollten insbesondere die tatsächliche lokale Temperaturveränderung der beteiligten Gewebe, die stattfindende Temperaturübermittlung zum Pulpenkavum, die Effektivität gebräuchlicher Kühlverfahren und der mögliche Einfluss einer simulierten pulpalen Zirkulation untersucht werden.

Material und Methoden

An 5 extrahierten humanen Molaren wurden Metallbrackets in Schmelz-Ätz-Technik befestigt und anschließend entfernt. Das Debonding des auf dem Zahn verbliebenen Komposits wurde mit einem Hartmetallfinierer in Kombination mit verschiedenen Kühlmethoden (Wasserkühlung, Luftkühlung, keine Kühlung) sowie ohne und mit Installation einer experimentell simulierten Pulpazirkulation Durchgeführt. Temperaturmessungen auf der Schmelzoberfläche erfolgten mittels einer Infrarotkamera, im Pulpenkavum mit Messsonden. Die Kalkulation der Temperaturgradienten sowie die statistische Analyse wurden mit der Software Prism durchgeführt.

Ergebnisse

Die Anwendung unterschiedlicher Kühlverfahren ergab signifikante Unterschiede bezüglich des Temperaturanstiegs und des zeitlichen Verlaufs für die Schmelzoberfläche und das Pulpenkavum. Für den Zahnschmelz wurde eine Temperatursteigerung von durchschnittlich 90,7 °C (ohne Kühlung), 46,6 °C (Luftkühlung) und 9,2 °C (Wasserkühlung) gemessen werden. Sie betrug im Pulpenkavum hingegen ohne Kühlung 9 °C, mit Luftkühlung 8,2 °C und mit Wasserkühlung 4,6 °C. Die Temperaturübertragung vom Zahnschmelz zur Pulpa war unter Verwendung der getesteten Kühlmodalitäten signifikant unterschiedlich und lag in allen Gruppen unter 10 % der extern gemessenen Temperatur. Die Simulation einer Mikrozirkulation reduzierte insbesondere die intrapulpalen Messwerte in signifikantem Maße.

Schlussfolgerungen

Die vorliegenden Daten stellen die thermalen Effekte und deren Weiterleitung von extrakoronal in die Zahnpulpa dreier häufig verwendeter Debondingverfahren gegenüber und vermitteln Einblick in den zeitlichen Verlauf sowie die tatsächliche Belastung dentaler Strukturen. Auf Grundlage der erhobenen Daten kann bei regelrechtem Entfernen des Klebers mit Hartmetallfinierern sowie unter Verwendung einer Luft- oder Wasserkühlung von keinem und bei Unterlassung einer zusätzlichen Kühlung von einem geringen Risiko des Erreichens kritischer pulpaler Temperaturen ausgegangen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alomari FA, Al-Habahbeh R, Alsakarna BK (2011) Responses of pulp sensibility tests during orthodontic treatment and retention. Int Endod J 44:635–643

    Article  PubMed  Google Scholar 

  2. Baysal A, Uysal T, Usumez S (2007) Temperature rise in the pulp chamber during different stripping procedures. Angle Orthod 77:478–482

    Article  PubMed  Google Scholar 

  3. Bicakci AA, Kocoglu-Altan B, Celik-Ozenci C et al (2010) Histopathologic evaluation of pulpal tissue response to various adhesive cleanup techniques. Am J Orthod Dentofac Orthop 138(12):e1–e7 (discussion 12–3)

    Google Scholar 

  4. Braun A, Kecsmar S, Krause F et al (2015) Effect of simulated pulpal fluid circulation on intrapulpal temperature following irradiation with an Nd:YVO laser. Lasers Med Sci 30:1197–1202

    Article  PubMed  Google Scholar 

  5. Braun A, Krillke RF, Frentzen M et al (2015) Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system. Lasers Med Sci 30:475–481

    Article  PubMed  Google Scholar 

  6. Choi SH, Roulet JF, Heintze SD et al (2014) Influence of cavity preparation, light-curing units, and composite filling on intrapulpal temperature increase in an in vitro tooth model. Oper Dent 39:E195–E205

    Article  PubMed  Google Scholar 

  7. Cohen SC (1979) Human pulpal response to bleaching procedures on vital teeth. J Endod 5:134–138

    Article  PubMed  Google Scholar 

  8. Davis S, Gluskin AH, Livingood PM et al (2010) Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal. J Endod 36:1892–1896

    Article  PubMed  Google Scholar 

  9. Hannig M, Bott B (1999) In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 15:275–281

    Article  PubMed  Google Scholar 

  10. Jost-Brinkmann PG, Radlanski RJ, Artun J et al (1997) Risk of pulp damage due to temperature increase during thermodebonding of ceramic brackets. Eur J Orthod 19:623–628

    Article  PubMed  Google Scholar 

  11. Jost-Brinkmann PG, Stein H, Miethke RR et al (1992) Histologic investigation of the human pulp after thermodebonding of metal and ceramic brackets. Am J Orthod Dentofac Orthop 102:410–417

    Article  Google Scholar 

  12. Kodonas K, Gogos C, Tziafa C (2009) Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J Dent 37:485–490

    Article  PubMed  Google Scholar 

  13. Macri RT, de Lima FA, Bachmann L et al (2014) CO laser as auxiliary in the debonding of ceramic brackets. Lasers Med Sci. doi:10.1007/s10103-014-1688-z

    PubMed  Google Scholar 

  14. Mank S, Steineck M, Brauchli L (2011) Influence of various polishing methods on pulp temperature: an in vitro study. J Orofac Orthop 72:348–357

    Article  PubMed  Google Scholar 

  15. Matthews B, Andrew D (1995) Microvascular architecture and exchange in teeth. Microcirculation 2:305–313

    Article  PubMed  Google Scholar 

  16. Mjor IA, Ferrari M (2002) Pulp-dentin biology in restorative dentistry. Part 6: reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques. Quintessence Int 33:35–63

    PubMed  Google Scholar 

  17. Nalbantgil D, Oztoprak MO, Tozlu M et al (2011) Effects of different application durations of ER:YAG laser on intrapulpal temperature change during debonding. Lasers Med Sci 26:735–740

    Article  PubMed  Google Scholar 

  18. O’Leary JM, Barnett TP, Parkin TD et al (2013) Pulpar temperature changes during mechanical reduction of equine cheek teeth: comparison of different motorised dental instruments, duration of treatments and use of water cooling. Equine Vet J 45:355–360

    Article  PubMed  Google Scholar 

  19. Ozturk B, Usumez A, Ozturk AN et al (2004) In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosthet Dent 91:436–440

    Article  PubMed  Google Scholar 

  20. Ramoglu SI, Karamehmetoglu H, Sari T et al (2014) Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Angle Orthod. doi:10.2319/030814-164.1

    PubMed  Google Scholar 

  21. Runnacles P, Arrais CA, Pochapski MT et al (2015) In vivo temperature rise in anesthetized human pulp during exposure to a polywave LED light curing unit. Dent Mater 31:505–513

    Article  PubMed  Google Scholar 

  22. Saitoh M, Masutani S, Kojima T et al (2004) Thermal properties of dental materials–cavity liner and pulp capping agent. Dent Mater J 23:399–405

    Article  PubMed  Google Scholar 

  23. Takla PM, Shivapuja PK (1995) Pulpal response in electrothermal debonding. Am J Orthod Dentofac Orthop 108:623–629

    Article  Google Scholar 

  24. Talebi M, Moghimi S, Shafagh M et al (2014) In vitro investigation of heat transfer phenomenon in human immature teeth. J Dent Res Dent Clin Dent Prospects 8:218–224

    PubMed  PubMed Central  Google Scholar 

  25. Uysal T, Eldeniz AU, Usumez S et al (2005) Thermal changes in the pulp chamber during different adhesive clean-up procedures. Angle Orthod 75:220–225

    PubMed  Google Scholar 

  26. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Ms. Beate Schiermeyer for technical support in performing the experiments. The study was supported by University of Bonn Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wolf.

Ethics declarations

Conflict of interest

P. Kley, M. Frentzen, K. Küpper, A. Braun, S. Kecsmar, A. Jäger, and Michael Wolf state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Additional information

PD Dr. med. dent. Michael Wolf.

P. Kley and M. Wolf contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kley, P., Frentzen, M., Küpper, K. et al. Thermotransduction and heat stress in dental structures during orthodontic debonding. J Orofac Orthop 77, 185–193 (2016). https://doi.org/10.1007/s00056-016-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0023-7

Keywords

Schlüsselwörter

Navigation