Skip to main content
Log in

Interleukin-1 Polymorphisms in Relation to External Apical Root Resorption (EARR)

Interleukin-1-Polymorphismen im Zusammenhang mit externen apikalen Wurzelresorptionen (EAWR)

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aim:

Recent papers have discussed genetic predisposition for root resorption. The aim of this study was to investigate this kind of relationship as dependent on the EARR phenotype. Alleles from IL-1A and IL-1B gene polymorphisms are discussed as genetically predisposing factors.

Material and Methods:

Orthopantomograms (OPG) exhibiting EARR (n = 96) were metrically and statistically analyzed for expression and were compared to a control group (n = 162). Additionally, the percentage of affected teeth per individual was determined. A subgroup of the EARR patient sample (n = 49) was assessed, based on blood analyses, for an association with genomic IL-1A (-889) and IL-1B (+3954) polymorphism.

Results:

In the case of the IL-1A variation, a significant difference of genotype distribution was found between EARR patients and the control group: genotype 2-2 could be seen significantly more frequently in the EARR group. Furthermore, the extent of resorption grades seemed to be influenced by the genetic constitution. The genotype distribution of the IL-1B polymorphism was comparable to the distribution in the control sample. In particular, allele 1 of the IL-1B polymorphism, which has been described as being associated with family histories of EARR, was observed less frequently in the patient cohort than in the control group.

Conclusions:

The available data of the IL-1A polymorphism point to an association of the genotype 2-2 with EARR. As analyses of individual subgroups showed, with the increase in the extent of EARR there was a recognizable correlation with genotype 2-2. The genotype distribution of the IL-1B polymorphism in patients and control cohorts revealed no indication of a predisposition. Despite the low number of cases in the own cohort, the data collected revealed that the allele 1 of the IL-1B polymorphism in patients with sporadic EARR did not contribute to predisposition, in contrast to familial cases. The results are an initial basis for pre-orthodontic genetic EARR risk analyses.

Zusammenfassung

Zielsetzung:

Aktuelle Studien diskutieren die genetische Disposition zu Wurzelresorptionen. Ziel der vorliegenden Studie war es, solche Zusammenhänge in Abhängigkeit des EAWR-Phänotyps darzustellen. Als prädisponierende genetische Faktoren werden Allele von Polymorphismen der Gene IL-1A und IL-1B diskutiert.

Material und Methodik:

Panoramaschichtaufnahmen (PSA) mit EAWR (n = 96) wurden metrisch und statistisch hinsichtlich der Ausprägung erfasst und mit einer Kontrollgruppe (n = 162) verglichen. Zusätzlich wurden die prozentualen Anteile der betroffenen Zähne je Individuum bestimmt. Eine Subgruppe des EAWR-Patientenkollektivs (n = 49) wurde anhand von Blutanalysen im Hinblick auf eine Assoziation mit den genomischen Polymorphismen IL-1A (-889) und IL-1B (+3954) untersucht.

Ergebnisse:

Im Falle der Variante IL-1A zeigte sich ein signifikanter Unterschied in der Genotypverteilung zwischen EAWR-Patienten und Kontrollgruppe: Genotyp 2-2 war signifikant häufiger in der EAWR-Gruppe zu beobachten. Auch schien das Ausmaß des Resorptionsgrades von der genetischen Konstitution beeinflusst zu sein. Die Genotypverteilung des Polymorphismus IL-1B war mit der Verteilung in einer Kontrollpopulation vergleichbar. Insbesondere das Allel 1 des Polymorphismus IL-1B, für das in Familien mit EAWR eine Assoziation berichtet wurde, war in der Patientenkohorte weniger häufig zu beobachten als in der Kontrollgruppe.

Schlussfolgerungen:

Die vorliegenden Daten des IL-1A-Polymorphismus wiesen eine Assoziation des Genotyps 2-2 mit EAWR auf. Wie Analysen der einzelnen Subgruppen zeigten, war mit dem Anstieg des EAWR-Ausmaßes ein Zusammenhang mit Genotyp 2-2 erkennbar. Die Genotypverteilung des IL-1B-Polymorphismus in Patienten- und Kontrollkohorten ergab keinen Hinweis auf eine Prädisposition. Trotz der noch geringen Fallzahl im eigenen Kollektiv ergaben die erhobenen Daten, dass das Allel 1 des IL-1B-Polymorphismus bei sporadischen EAWR-Patienten im Gegensatz zu familiären Fällen nicht zur Prädisposition beitrug. Die Ergebnisse sind eine erste Grundlage für präorthodontische genetische EAWR-Risikoanalysen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop 2001;119:307–32.

    Article  PubMed  Google Scholar 

  2. Al-Qawasmi RA, Hartsfield JK Jr, Everett ET. Genetic predisposition to external apical root resorption. Am J Orthod Dentofacial Orthop 2003;123:242–52.

    Article  PubMed  Google Scholar 

  3. Al-Qawasmi RA, Hartsfield JK Jr, Everett ET. Genetic predisposition to external apical root resorption in orthodontic patients: Linkage of chromosome 18 marker. J Dent Res 2003;82:356–60.

    Article  PubMed  Google Scholar 

  4. Al-Qawasmi RA, Hartsfield JK Jr, Everett ET. Root resorption associated with orthodontic force in inbred mice: genetic constributions. Eur J Orthod 2006;28:13–9.

    Article  PubMed  Google Scholar 

  5. Balducci L, Ramachandran A, Hao J. Biological markers for evaluation of root resorption. Arch Oral Biol 2007;52:203–8.

    Article  PubMed  Google Scholar 

  6. Baumrind S, Korn EL, Boyd RL. Apical root resorption in orthodontically treated adults. Am J Orthod Dentofacial Orthop 1996;110:311–20.

    Article  PubMed  Google Scholar 

  7. Begue-Kirn C, Ruch JV, Ridall AL, Butler WT. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci 1998;1:254–9.

    Google Scholar 

  8. Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: Part 1. Literature review. Am J Orthod Dentofacial Orthop 1993;103:62–6.

    Article  PubMed  Google Scholar 

  9. Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: Part 2. Literature review. Am J Orthod Dentofacial Orthop 1993;103:138–46.

    Article  PubMed  Google Scholar 

  10. Budowle B, Charkraborty R, Giusti AM. Analysis of the VNTR locus D1S80 by PER followed by high-resolution PAGE. Am J Hum Genet 1991;48:137–44.

    PubMed  Google Scholar 

  11. Evans CA, Srinivasan R, George A. Detection of dentin proteins in human gingival crevicular fluid. In: Davidovitch Z, Mah J, eds. Biological mechanisms of tooth movement and craniofacial adaptation. Harvard Society for the Advancement of Orthodontics 2000;201–5.

  12. Falahat B, Ericson S, Mak D’Amico R, Bjerklin K. Incisor root resorption due to ectopic maxillary canines. Angle Orthod 2008;78:778–85.

    Article  PubMed  Google Scholar 

  13. Follin M, Ericsson I, Thilander B. Occurrence and distribution of root resorption in orthodontically moved premolars in dog. Angle Orthod 1986;56:164–75.

    PubMed  Google Scholar 

  14. Fritz U, Diedrich P, Wiechmann D. Apical root resoption after lingual orthodontic therapy. J Orofac Orthop 2003;64:434–42.

    Article  PubMed  Google Scholar 

  15. George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acid phosphoprotein. Implications for induction of biomineralization. J Biol Chem 1993;268:12624–30.

    PubMed  Google Scholar 

  16. George A. Dentin matrix proteins. In: Rabie AM, Urist MR, eds. Bone formation and repair. Amsterdam: Elsevier Science BV 1997:125–32.

    Google Scholar 

  17. Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod 1984;85:424–30.

    Article  PubMed  Google Scholar 

  18. Göz G, Rahn BA: Parodontale und alveoläre Reaktion bei kippender Zahnbelastung – eine tierexperimentelle Untersuchung. Fortschr Kieferorthop 1985;46:149–62.

    Article  PubMed  Google Scholar 

  19. Göz G, Rakosi T. Die apikale Wurzelresorption unter kieferorthopädischer Behandlung. Fortschr Kieferorthop 1989;50:196–206.

    Article  PubMed  Google Scholar 

  20. Grieve WG; Johnson GK, Moore RN, et al. Prostaglandin E (PGE) and interleukin-1 ß (IL-1 ß) levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1994;105:369–74.

    Article  PubMed  Google Scholar 

  21. Harris EF, Kineret SE, Tolley EA. A heritable component for external apical root resorption in patients treated orthodontically. Am J Orthod Dentofacial Orthop 1997;111: 301–9.

    Article  PubMed  Google Scholar 

  22. Harry MR, Sims MR. Root resorption in bicuspid intrusion: a scanning electron microscopic study. Angle Orthod 1982;52:235–58.

    PubMed  Google Scholar 

  23. Kaley J, Phillips C. Factors related to root resorption in edgewise practice. Angle Orthod 1991;61:125–32.

    PubMed  Google Scholar 

  24. Levander E, Bajka R, Malmgren O. Early radiographic diagnosis of apical root resorption during orthodontic treatment: a study of maxillary incisors. Eur J Orthod 1998;16:223–8.

    Google Scholar 

  25. Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod 1988;10:30–8.

    PubMed  Google Scholar 

  26. Linge BO, Linge L. Apical root resorption in upper anterior teeth. Eur J Orthod 1983;5:173–83.

    PubMed  Google Scholar 

  27. Linge BO, Linge L. Wurzellängen der oberen Schneidezähne und kieferorthopädische Therapie. Fortschr Kieferorthop 1983;44:392–407.

    Article  PubMed  Google Scholar 

  28. MacDougall M, Simmons D, Luan X, et al. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. J Biol Chem 1997;272:835–42.

    Article  PubMed  Google Scholar 

  29. Massler M, Perreault JG. Root resorption in the permanent teeth of young adults. J Dent Child 1954;21:158–64.

    Google Scholar 

  30. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988:16:1208.

    Article  Google Scholar 

  31. Mizuno N, Shiba H, Mouri Y, et al. Characterisation of epithelial cells derived from periodontal ligament by gene expression patterns of bone-related and enamel proteins. Cell Biol Int 2005;29:111–7.

    Article  PubMed  Google Scholar 

  32. Newman WG. Possible etiologic factors in external root resorption. Am J Orthod 1975;67:522–39.

    Article  PubMed  Google Scholar 

  33. Ngan DC, Kharbanda OP, Byloff FK, Darendeliler MA. The genetic contribution to orthodontic root resorption: a retrospective twin study. Aust Orthod J 2004;20:1–9.

    PubMed  Google Scholar 

  34. Nishioka M, loi H, Nakata S, et al. Root resorption and immune system factors in the Japanese. Angle Orthod 2006;76:103–8.

    PubMed  Google Scholar 

  35. Owman-Moll P, Kurol J, Lundgren D. Repair of orthodontically induced root resorption in adolescents. Angle Orthod 1995;95:403–8.

    Google Scholar 

  36. Oyama K, Motoyoshi M, Hirabayashi M, et al. Effects of root morphology on stress distribution at the root apex Eur J Orthod 2007;29:113–7.

    Article  PubMed  Google Scholar 

  37. Reitan K. Effects of force magnitude and duration of tooth movement on different alveolar bone types. Angle Orthod 1964;44:244–55.

    Google Scholar 

  38. Ritchie HH, Berry JE, Somerman MJ, et al. Dentin sialoprotein (DSP) transcripts: developmentally-sustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur J Oral Sci 1997;105:405–13.

    PubMed  Google Scholar 

  39. Takagi Y, Fujisawa R, Sasaki S. Identification of dentin phosphophoryn localization by histochemical stainings. Connect Tissue Res 1986;14:279–92.

    Article  PubMed  Google Scholar 

  40. Uematsu S, Mogi M, Deguchi T. Interleukin (IL)-1ß, IL-6, tumor necrosis factor-a, epidermal growth factor, and ß2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement. J Dent Res 1996;75:562–7.

    Article  PubMed  Google Scholar 

  41. Van Loenen M, Dermaut LR, Degrieck J, De Pauw GA. Apical root resorption of upper incisors during the torquing stage of the tipedge technique. Eur J Orthod 2007;29:583–8.

    Article  PubMed  Google Scholar 

  42. Vardimon AD, Graber TM, Pitaru S. Ursachen und Reparaturvorgänge der externen Wurzelresorption nach Gaumennahterweiterung mitmagnetischen und konventionellen Dehnapparaten. Fortschr Kieferorthop 1991;52:193–203.

    Article  PubMed  Google Scholar 

  43. Wehrbein H, Fuhrmann RAW, Diedrich PR. Human histological tissue response after long-term orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1995;107:360–371.

    Article  PubMed  Google Scholar 

  44. Wei S, Kitaura H, Zhou P, et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005;115:282–90.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Gülden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gülden, N., Eggermann, T., Zerres, K. et al. Interleukin-1 Polymorphisms in Relation to External Apical Root Resorption (EARR). J Orofac Orthop 70, 20–38 (2009). https://doi.org/10.1007/s00056-009-8808-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-009-8808-6

Key Words:

Schlüsselwörter:

Navigation