Skip to main content
Log in

Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

An enormous variety of volatile substances are released in distinctive blends by fungal substrates that should be recognisable for fungivores. Certain compounds dominate in most of the fungal species. Fungal oxylipins as the eight-carbon volatiles are the most prominent. This raises the question whether such are specific enough to qualify as appropriate host cues for a fungivore. We could demonstrate differentiated responses of the fungivorous beetle Bolitophagus reticulatus to eight-carbon volatiles: Nine eight-carbon volatiles were identified with GC–MS from its host fungus Fomes fomentarius. 1-Octen-3-ol, 3-octanone and 3-octanol induced contrasting behaviour of beetles in olfactometer bioassays. Electroantennographic experiments investigating the beetle olfactory sense revealed distinguishable antennal responses. Moreover, their individual release from F. fomentarius fruiting bodies changes not only considerably, but also independently over successive stages of beetle colonisation. Concentrations of attractive and repellent eight-carbon volatiles correlate to frequency of beetles in the field and further substantiate their relevance as host cues. Our results show that a specialist fungivore is able to differentiate the most common eight-carbon volatiles of fungi to assess host quality. Key roles and marked similarities of fungal to plant oxylipins suggest a comparable importance of eight-carbon volatiles to fungivores as green leaf volatiles have to herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150. doi:10.1007/s00049-004-0277-1

    Article  CAS  Google Scholar 

  • Bouget C, Brustel H, Brin A, Valladres L (2009) Evaluation of window flight traps for effectiveness at monitoring dead wood-associated beetles: the effect of ethanol lure under contrasting environmental conditions. Agric For Entomol 11:143–152. doi:10.1111/j.1461-9563.2008.00400.x

    Article  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063. doi:10.1111/j.1742-4658.2011.08027.x

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Schneider S, Göbel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565. doi:10.1042/BJ20091096

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274. doi:10.1016/j.tplants.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  • Byers JA, Zhang QH, Birgersson G (2000) Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften 87:503–507. doi:10.1007/s001140050768

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Wu CM (1984) Studies on the enzymic reduction of 1-octen-3-one in mushroom (Agaricus bisporus). J Agr Food Chem 32:1342–1344. doi:10.1021/jf00126a030

    Article  CAS  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs des champignons: chimie et rôle dans les interactions biotiques—une revue (in French). Cryptogam, Mycol 26:299–364

    Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fungal Genet Biol 48:4–14. doi:10.1016/j.fgb.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  • Combet E, Henderson J, Daniel CE, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326. doi:10.1007/s10267-006-0318-4

    Article  CAS  Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2009) Influence of sporophore development, damage, storage, and tissue specificity on the enzymic formation of volatiles in mushrooms (Agaricus bisporus). J Agr Food Chem 57:3709–3717. doi:10.1021/jf8036209

    Article  CAS  Google Scholar 

  • Cometto-Muñiz JE, Abraham MH (2010) Odour detection by humans of lineal aliphatic aldehydes and helional as gauged by dose-response functions. Chem Senses 35:289–299. doi:10.1093/chemse/bjq018

    Article  PubMed Central  PubMed  Google Scholar 

  • Drilling K, Dettner K (2009) Electrophysiological responses of four fungivorous coleoptera to volatiles of Trametes versicolor: implications for host selection. Chemoecology 19:109–115. doi:10.1007/s00049-009-0015-9

    Article  CAS  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson AK (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590. doi:10.1023/A:1020958005023

    Article  Google Scholar 

  • Gara RI, Littke WR, Rhoades DF (1993) Emission of ethanol and monoterpenes by fungal infected lodgepole pine trees. Phytochemistry 34:987–990. doi:10.1016/S0031-9422(00)90699-X

    Article  CAS  Google Scholar 

  • Getz WM, Lánsky P (2001) Receptor dissociation constants and the information entropy of membranes coding ligand concentration. Chem Senses 26:95–104. doi:10.1093/chemse/26.2.95

    Article  CAS  PubMed  Google Scholar 

  • Hågvar S (1999) Saproxylic beetles visiting living sporocarps of Fomitopsis pinicola and Fomes fomentarius. Nor J Entomol 46:25–32

    Google Scholar 

  • Hanski I (1989) Fungivory: fungi, insects and ecology. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect–fungus interactions. Academic Press, London, pp 25–68

    Google Scholar 

  • Holighaus G, Schütz S (2006) Odors of wood decay as semiochemicals for Trypodendron domesticum L. (Col., Scolytidae). Mitt dtsch Ges allg angew Entomol 15:161–165

    Google Scholar 

  • Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117:418–426. doi:10.1093/toxsci/kfq222

    Article  CAS  PubMed  Google Scholar 

  • Jonsell M, Nordlander G (1995) Field attraction of Coleoptera to odours of the wood-decaying polypores Fomitopsis pinicola and Fomes fomentarius. Ann Zool Fenn 32:391–402

    Google Scholar 

  • Jonsell M, Nordlander G (2004) Host selection patterns in insects breeding in bracket fungi. Ecol Entomol 29:697–705. doi:10.1111/j.0307-6946.2004.00654.x

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Jonsson M (1999) Colonisation patterns of insects breeding in wood-decaying fungi. J Insect Conserv 3:145–161. doi:10.1023/A:1009665513184

    Article  Google Scholar 

  • Jonsell M, Nordlander G, Ehnström B (2001) Substrate associations of insects breeding in fruiting bodies of wood-decaying fungi. Ecol Bull 49:173–194

    Google Scholar 

  • Jonsell M, Schroeder M, Larsson T (2003) The saproxylic beetle Bolitophagus reticulatus: its frequency in managed forests, attraction to volatiles and flight period. Ecography 26:421–428. doi:10.1034/j.1600-0587.2003.03449.x

    Article  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid–derived signals in plant defense. Annu Rev Phytopathol 47:153–176. doi:10.1146/annurev-phyto-080508-081820

    Article  CAS  PubMed  Google Scholar 

  • Knaden M, Strutz A, Ahsan J, Sachse S, Hansson BS (2012) Spatial representation of odorant valence in an insect brain. Cell Rep 1:392–399. doi:10.1016/j.celrep.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Knezevic SZ, Streibig JC, Ritz C (2007) Utilising R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840–848. doi:10.1614/WT-06-161.1

    Article  Google Scholar 

  • Kües U, Navarro-González M (2009) Communication of fungi on individual, species, kingdom, and above kingdom levels. In: Anke T, Weber D (eds) The Mycota. Physiology and genetics. Selected basic and applied aspects, vol. 15. Springer, Berlin, pp 79–106. doi:10.1007/978-3-642-00286-1_5

    Google Scholar 

  • Matthewman WG, Pielou DP (1971) Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Can Entomol 103:775–847. doi:10.4039/Ent103775-6

    Google Scholar 

  • Mau JL, Chyau CC, Li JY, Tseng YH (1997) Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agr Food Chem 45:4726–4729. doi:10.1021/jf9703314

    Article  CAS  Google Scholar 

  • McLafferty FW (2009) Registry of mass spectral data combined with NIST/EPA/NIH database 2008. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Midtgaard F, Rukke BA, Sverdrup-Thygeson A (1998) Habitat use of the fungivorous beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae): Effects of basidiocarp size, humidity and competitors. Eur J Entomol 95:559–570

    Google Scholar 

  • Müller-Using S, Bartsch N (2009) Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in central Germany. Eur J Forest Res 128:287–296. doi:10.1007/s10342-009-0264-8

    Article  Google Scholar 

  • Mushobozy DK, Pierce HD, Borden JH (1993) Evaluation of 1-octen-3-o1 and nonanal as adjuvants for aggregation pheromones for three species of cucujid beetles (Coleoptera: Cucujidae). J Econ Entomol 86:1835–1845

    CAS  Google Scholar 

  • Nadvornaya LS, Nadvornyy VG (1991) Biology of the beetles Bolitophagus reticulatus L. and Uloma culinaris L. (Coleoptera, Tenebrionidae) in the forest-steppe zone of Ukraine. Entomol Rev 70:35–40 (originally published in Ėntomologičeskoe Obozrenie 70:349–354, in Russian)

    Google Scholar 

  • Nilsson T (1997) Survival and habitat preferences of adult Bolitophagus reticulatus. Ecol Entomol 22:82–89. doi:10.1046/j.1365-2311.1997.00035.x

    Article  Google Scholar 

  • Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612. doi:10.1023/A:1021400606217

    Article  PubMed  Google Scholar 

  • Pfeil RM, Mumma RO (1993) Bioassay for evaluating attraction of the phorid fly, Megaselia halterata to compost colonised by the commercial mushroom, Agaricus bisporus and to 1-octen-3-ol and 3-octanone. Entomol Exp Appl 69:137–144. doi:10.1111/j.1570-7458.1993.tb01736.x

    Article  CAS  Google Scholar 

  • Pierce AM, Pierce HD, Oehlschlager AC, Borden JH (1991a) 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Cucujidae). J Chem Ecol 17:567–580. doi:10.1007/BF00982127

    Article  CAS  PubMed  Google Scholar 

  • Pierce AM, Pierce HD, Borden JH, Oehlschlager AC (1991b) Fungal volatiles: semiochemicals for stored-product beetles (Coleoptera: Cucujidae). J Chem Ecol 17:581–597. doi:10.1007/BF00982128

    Article  CAS  PubMed  Google Scholar 

  • Piveteau F, Le Guen S, Gandemer G, Baud JP, Prost C, Demaimay M (2000) Aroma of fresh oysters Crassostrea gigas: composition and aroma notes. J Agr Food Chem 48:4851–4857. doi:10.1021/jf991394k

    Article  CAS  Google Scholar 

  • Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188. doi:10.1007/s10144-006-0262-3

    Article  Google Scholar 

  • Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer Science + Business Media, New York

    Google Scholar 

  • Rohlfs M, Churchill ACL (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48:23–34. doi:10.1016/j.fgb.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  • Rösecke J, Pietsch M, König WA (2000) Volatile constituents of wood-rotting basidiomycetes. Phytochemistry 54:747–750. doi:10.1016/S0031-9422(00)00138-2

    Article  PubMed  Google Scholar 

  • Sawahata T, Shimano S, Suzuki M (2008) Tricholoma matsutake 1-octen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18:111–114. doi:10.1007/s00572-007-0158-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schütz S, Weißbecker B, Koch UT, Hummel HE (1999) Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 14:221–228. doi:10.1016/S0956-5663(98)00092-X

    Article  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89. doi:10.1016/j.fbr.2007.05.004

    Article  Google Scholar 

  • Thakeow P (2008) Development of a basic biosensor system for wood degradation using volatile organic compounds. Dissertation, Göttingen University, Göttingen, Germany

  • Thakeow P, Angeli S, Weißbecker B, Schütz S (2008) Antennal and behavioral responses of Cis boleti to fungal odour of Trametes gibbosa. Chem Senses 33:379–387. doi:10.1093/chemse/bjn005

    Article  CAS  PubMed  Google Scholar 

  • Tressl R, Bahri D, Engel KH (1982) Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agr Food Chem 30:89–93. doi:10.1021/jf00109a019

    Article  CAS  Google Scholar 

  • Trienens M, Rohlfs M (2012) Insect–fungus interference competition—the potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. Fungal Ecol 5:191–199. doi:10.1016/j.funeco.2011.07.009

    Article  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118. doi:10.1016/j.tim.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • van Giessen WA, Fescemyer HW, Burrows PM, Peterson JK, Barnett OW (1994) Quantification of electroantennogram responses of the primary rhinaria of Acyrthosiphon pisum (Harris) to C4–C8 primary alcohols and aldehydes. J Chem Ecol 20:909–927. doi:10.1007/BF02059587

    Article  PubMed  Google Scholar 

  • Visser JH (1986) Host odor perception in phytophagous insects. Annu Rev Entomol 31:121–144. doi:10.1146/annurev.ento.31.1.121

    Article  Google Scholar 

  • Weissbecker B, Holighaus G, Schütz S (2004) Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J Chromatogr A 1056:209–216. doi:10.1016/j.chroma.2004.06.120

    Article  CAS  PubMed  Google Scholar 

  • Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29:531–533. doi:10.1016/S0305-1978(00)00076-4

    Article  CAS  PubMed  Google Scholar 

  • Wurzenberger M, Grosch W (1983) Bestimmung von 1-Octen-3-ol in Pilzen und Pilzprodukten (in German). Z Lebensm Unters Forsch A 176:16–19

    Article  CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1986) Enzymic oxidation of linolenic acid to 1, Z-5-octadien-3-ol, Z-2, Z-5-octadien-1-ol and 10-oxo-E-8-decenoic acid by a protein fraction from mushrooms (Psalliota bispora). Lipids 21:261–266. doi:10.1007/BF02536408

    Article  CAS  Google Scholar 

  • Yaws CL (2007) The Yaws handbook of vapour pressure, Antoine coefficients. Gulf Publishing Company, Houston

    Google Scholar 

  • Zhang ZM, Wu WW, Li GK (2008) A GC–MS study of the volatile organic composition of straw and Oyster Mushrooms during maturity and its relation to antioxidant activity. J Chromatogr Sci 46:690–696. doi:10.1093/chromsci/46.8.690

    Article  CAS  PubMed  Google Scholar 

  • Ziegenbein FC, Hanssen HP, König WA (2006) Chemical constituents of the essential oils of three wood-rotting fungi. Flavour Fragr J 21:813–816. doi:10.1002/ffj.1732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Marko Rohlfs for valuable comments on the manuscript and Johannes Steidle for its examination. Rüdiger Blohme performed preliminary experiments and provided the photographs. Norbert Bartsch granted access to the long term study site “B2” in the Solling mountains. Yann Clough and Christoph Scherber gave us essential advice on statistical analyses. Anna Plašil helped to improve the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Holighaus.

Additional information

Handling Editor: Marko Rohlfs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holighaus, G., Weißbecker, B., von Fragstein, M. et al. Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore. Chemoecology 24, 57–66 (2014). https://doi.org/10.1007/s00049-014-0151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-014-0151-8

Keywords

Navigation