Skip to main content
Log in

Impact of hydroxylated and non-hydroxylated aliphatic glucosinolates in Arabidopsis thaliana crosses on plant resistance against a generalist and a specialist herbivore

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Glucosinolates (GSs) are part of a two-component defence system, characteristic for the Brassicales, including the model species Arabidopsis thaliana (L.) Heynh. The defence activity of GSs is associated with different side chain structures. The AOP genes are central in side-chain modification. AOP2 mediates formation of alkenyl GS from a methylsulfinyl precursor, whereas AOP3 catalyzes production of hydroxy-alkyl GSs from the same precursor. Although several studies have assessed the role of GSs in plant defence, the function of specific aliphatic GSs in plant defence is still not clarified. Structural different GSs may influence insect herbivores differentially. We created a set of plant lines derived of a cross between two A. thaliana accessions, Gie-0 × Sap-0, which dominantly accumulate either 3-methylsulfinylpropyl GS or 3-hydroxypropyl GS. The generalist Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) and the crucifer-specialist Pieris brassicae (L.) (Lepidoptera: Pieridae) were used as model insects, to study effects of individual aliphatic GSs on lepidopteran herbivores with a different feeding specialization. However, the experiments revealed that weight gain of S. exigua and P. brassicae third and fourth-larval instars was similar on both chemotypes. But leaf consumption of the generalist was higher on 3-methylsulfinylpropyl-producing lines with low GS levels (23.2 μmol g−1) than on 3-hydroxypropyl-producing lines that contained a more than twofold higher amount of GSs (60 μmol g−1). In contrast, no differential effects of non-hydroxylated and hydroxylated GSs were found on the specialist P. brassicae. Our study indicates that there is no simple relationship between GS content and insect responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simões M, Rosa EA, Bennett RN (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106(6):2096–2105

    Article  PubMed  CAS  Google Scholar 

  • Arany AM, de Jong TJ, Kim HK, van Dam NM, Choi YH, Verpoorte R, van der Meijden E (2008) Glucosinolates and other metabolites in the leaves of Arabidopsis thaliana from natural populations and their effects on a generalist and a specialist herbivore. Chemoecology 18:65–71

    Article  CAS  Google Scholar 

  • Bainard LD, Brown PD, Upadhyaya MK (2009) Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci 57:386–393

    Article  CAS  Google Scholar 

  • Benderoth M, Textor S, Windsor AJ, Mittchel-Olds T, Gershenzon J, Kroymann J (2006) Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103(24):9118–9123

    Article  PubMed  CAS  Google Scholar 

  • Blau PA, Feeny P, Contardo L, Robson DS (1978) Allylglucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance. Science 200:1296–1298

    Article  PubMed  CAS  Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    Article  PubMed  CAS  Google Scholar 

  • Borek V, Elberson LR, Mc Caffrey JP, Morra MJ (1997) Toxicity of rapeseed meal and methyl isothiocyanate to larvae of the black vine weevil (Coleoptera: Curculionidae). J Econ Entomol 90:109–112

    CAS  Google Scholar 

  • Borek V, Elberson LR, Mc Caffrey JP, Morra MJ (1998) Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J Agric Food Chem 90:109–112

    Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  PubMed  CAS  Google Scholar 

  • Buchner R (1987) Approach to determination of HPLC response factors for glucosinolates, pp 50–58. In: Wathelet JP (ed) Glucosinolates in rapeseed: analytical aspects. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Burow M, Müller R, Gershenzon J, Wittstock U (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32:2333–2349

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Halkier BA, Kliebenstein DJ (2010) Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr Opin Plant Biol 13:348–353

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  PubMed  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2009) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8(1):299–310

    Article  CAS  Google Scholar 

  • Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild strains of cabbage, Brassica oleracea. J Chem Ecol 34:132–143

    Article  PubMed  CAS  Google Scholar 

  • Graser G, Oldham NJ, Brown PD, Temp U, Gershenzon J (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry 57:23–32

    Article  PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  PubMed  CAS  Google Scholar 

  • Hansen BJ, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxigenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50(5):902–910

    Article  PubMed  CAS  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  PubMed  CAS  Google Scholar 

  • Kelly PJ, Bones A, Rossiter JT (1998) Subcellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J, Mitchell-Olds T (2001a) Gene duplication and the diversification of secondary metabolism: side chain modification of glucosinolates in Arabidopsis thaliana. Plant Cell 13:681–693

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001b) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2009) A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem Rev 8:243–254

    Article  CAS  Google Scholar 

  • Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100:14587–14592

    Article  PubMed  CAS  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifer protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusiani herbivory. Plant Cell 13:2793–2807

    Google Scholar 

  • Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419

    Article  CAS  Google Scholar 

  • Metspalu L, Hiiesaar K, Jõudu J, Kuusik A (2003) Influence of food on the growth, development and hibernation of large white butterfly (Pieris brassicae). Agron Res 1:85–92

    Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis thaliana (L.) glucosinolate accumulation and response to both phloem feeding and chewing insects. Plant Physiol 138(2):1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant–herbivore interactions. Heredity 75:472–484

    Article  CAS  Google Scholar 

  • Mumm R, Burow M, Bukovinskine’Kiss G, Kazantzidou E, Wittstock U, Dicke M, Gershenzon J (2008) Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J Chem Ecol 34(10):1311–1321

    Google Scholar 

  • Newton EL, Bullock JM, Hodgson DJ (2009) Glucosinolate polymorphism in wild cabbage (Brassica oleracea) influences the structure of herbivore communities. Oecologia 160:63–76

    Article  PubMed  Google Scholar 

  • Nielsen JK, Hansen MD, Agerbirk N, Petersen BL, Halkier BA (2001) Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83

    Article  CAS  Google Scholar 

  • Olsson K, Jonasson T (1994) Leaf feeding by caterpillars on white cabbage cultivars with different 2-propenyl glucosinolate (sinigrin) content. J Appl Ent 118:197–202

    Article  Google Scholar 

  • Poelman EH, Galiart RJFH, Raaijmakers CE, van Loon JJA, van Dam NM (2008) Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomol Exp Appl 127:218–228

    Article  Google Scholar 

  • Poelman EH, van Dam NM, van Loon JJA, Vet LEM, Dicke M (2009) Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology 90(7):1863–1877

    Article  PubMed  Google Scholar 

  • Renwick JAA (2001) Variable diets and changing taste in plant–insect relationship. J Chem Ecol 27(6):1063–1076

    Article  PubMed  CAS  Google Scholar 

  • Rohr F, Ulrichs C, Mucha-Pelzer T, Mewis I (2006) Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Commun Agric Appl Biol Sci 71(2 Pt B):507–515

    PubMed  CAS  Google Scholar 

  • Rohr F (2009) Variabilität aliphatischer Glucosinolate in Arabidopsis thaliana–Ökotypen und deren Einfluß auf die Wirtspflanzeneignung von zwei folivoren Insektenarten, vol 4, p 90. In: Ulrichs C, Büttner C (eds) Berliner ökophysiologische und phytomedizinische Schriften. Der Andere Verlag, Tönning

    Google Scholar 

  • Rohr F, Ulrichs C, Mewis I (2009) Variability of aliphatic glucosinolates in Arabidopsis thaliana L.—impact on glucosinolate profile and insect resistance. J Appl Bot Food Qual 82:131–135

    CAS  Google Scholar 

  • Seo ST, Tang CS (1982) Hawaiian fruit-flies (Diptera, Tephritidae)—toxicity of benzylisothiocyanate against eggs or 1st instars of three species. J Econ Entomol 75:1132–1135

    Google Scholar 

  • Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T (2000) Induced plant defense responses against chewing insects ethylene signalling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 124:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 11(Suppl):3027S–3033S

    Google Scholar 

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  • van Leur H, Vet LEM, van der Putten WH, van Dam N (2008) Barbarea vulgaris phenotypes differentially affect performance and preference of two different species of Lepidopteran herbivores. J Chem Ecol 34(2):121–131

    Article  PubMed  Google Scholar 

  • Wentzell A, Rowe CH, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ (2007) Linking metabolic QTLs with Network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3(9):1687–1701

    Article  PubMed  CAS  Google Scholar 

  • Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol 147:415–428

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel J (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101(14):4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Burow M (2010) Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. In: Last R, Chang C, Jander G, Kliebenstein DJ, McClung R, Millar H, Torii K, Wagner D (eds) The Arabidopsis book. doi:10.1199/tab.0134 (http://www.aspb.org/publications/arabidopsis/)

  • Zhang ZY, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Michael Reichelt and Dr. Jonathan Gershenzon (Max Planck Institute for Chemical Ecology Jena, Germany) for their collaborative help in analyzing the glucosinolate hydrolysis products. This work was funded by the DFG (Deutsche Forschungsgemeinschaft, GZ ME 2095/4-1 and /4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Rohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohr, F., Ulrichs, C., Schreiner, M. et al. Impact of hydroxylated and non-hydroxylated aliphatic glucosinolates in Arabidopsis thaliana crosses on plant resistance against a generalist and a specialist herbivore. Chemoecology 21, 171–180 (2011). https://doi.org/10.1007/s00049-011-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-011-0082-6

Keywords

Navigation