Skip to main content
Log in

Simultaneous analysis of tissue- and genotype-specific variation in Solidago altissima (Asteraceae) rhizome terpenoids, and the polyacetylene dehydromatricaria ester

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Solidago altissima is a dominant perennial of old field succession in North America with the ability to form dense, almost monospecific stands; the plant is also considered an aggressive invasive throughout Europe and Japan. S. altissima’s success is facilitated by large belowground rhizome systems that allow clonal spread and possible allelopathic suppression of competitors. A diversity of polar and nonpolar terpenes and polyacetylenes have been described from S. altissima rhizomes; however, there is little information documenting the concentration or distribution of these allelochemicals and how they relate to plant defense hypotheses. We thus developed a GC–MS method to simultaneously quantify rhizome terpenes and polyacetylenes that spanned a range of polarities and confirmed the presence of 19 terpenoids in addition to the polyacetylene dehydromatricaria ester (DME). We, (1) determined relative concentrations and variability of mono-, sesqui-, neutral diterpenes, diterpene acids and DME within a central NY population; (2) compared accumulation of these compounds in differently developed rhizome tissue; and (3) tested the alleopathic effect of DME at naturally occurring concentrations on germination and seedling growth of Asclepias syriaca, a common competitor of S. altissima. Overall, diterpene acids dominated the phytochemical profile of most genotypes (averaging 0.75% of fresh mass) with kolavenic acid being the single most abundant component. Monoterpene, sesquiterpene and acidic diterpene concentrations were all significantly greater in the actively elongating (current-year) rhizomes compared to established rhizomes and followed optimal defense theory predictions. Conversely, DME levels were lower in the current-year rhizomes than in established rhizomes. DME inhibited seed germination of A. syriaca in a dose-dependent manner. The tissue-specific accumulation of the different compounds may represent a biosynthetic and/or allocational strategy that limits the exposure of young-tissue to high concentrations of DME possibly limiting the cytotoxic effects of DME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilasha D, Quintana N, Vivanco J, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis restrain the native European flora? J Ecol 96:993–1001

    Article  Google Scholar 

  • Abrahamson WG, Anderson SS, McCrea KD (1991) Clonal integration: nutrient sharing between Sister Ramets of Solidago altissima (Compositae). Am J Bot 78(11):1508–1514

    Article  Google Scholar 

  • Angelo C, Pinto AC, Braga WF, Rezende CM, Garrido FMS, Veiga VF, Bergter L, Patitucci ML, Antunes OAC (2000) Separation of acid diterpenes of Copaifera cearensis Huber ex Ducke by flash chromatography using potassium hydroxide impregnated silica gel. J Braz Chem Soc 11(4):355–360

    Google Scholar 

  • Anthonsen T, Henderson MS, Martin A, Murray RDH, McCrindle R, McMaster D (1973) Constituents of Solidago species. Part IV. Solidagoic acids A and B, diterpenoids from Solidago gigantea var. serotina. Can J Chem 51:1332–1345

    Article  CAS  Google Scholar 

  • Auld B, Morita H, Nishida T, Itol M, Michae P (2003) Shared exotica: plant invasions of Japan and south eastern Australia. Cunninghamia 8(1):147–152

    Google Scholar 

  • Benevides PJC, Young MCM, Bolzani VD (2004) Biological activities of constituents from Psychotria spectabilis. Pharm Biol 42(8):565–569

    Article  CAS  Google Scholar 

  • Bohlmann F, Singh P, Singh RK, Joshi K, Jaicupovic J (1985) A diterpene with a new carbon skeleton from Solidago altissima. Phytochemistry 24(5):1114–1115

    Article  CAS  Google Scholar 

  • Cain ML (1990) Patterns of Solidago altissima ramet growth and mortality: the role of below-ground ramet connections. Oecologia 82(2):201–209

    Article  Google Scholar 

  • Capek M (1971) The possibility of biological control of imported weeds of the genus Solidago in Europe. Acta Instituti Forestalis Zvolenensis 1971:429–441

    Google Scholar 

  • Curtis JD, Lersten NR (1990) Oil reservoirs in stem, rhizome and root of Solidago canadensis (Asteraceae, tribe Astereae). Nord J Bot 10(4):443–449

    Article  Google Scholar 

  • Etterson JR, Delf DE, Craig TP, Ando Y, Ohgushi T (2008) Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany 86:91–97

    Article  Google Scholar 

  • Haig T (2008) Allelochemicals in plants. In: Zeng RS, Azim U, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, Berlin, pp 63–104

    Chapter  Google Scholar 

  • Hartnett DC, Bazazz FA (1984) Physiological integration among intraclonal ramets in Solidago canadensis. Ecology 64(4):779–788

    Article  Google Scholar 

  • Henderson MS, McCrindle R, McMaster D (1973) Constituents of Solidago species part V. Non-acidic diterpenoids form Solidago gigantea var. serotina. Can J Chem 51:1346–1358

    Article  CAS  Google Scholar 

  • Hull-Sanders HM, Clare R, Johnson RH, Meyer GA (2007) Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores. J Chem Ecol 33:781–799

    Article  CAS  PubMed  Google Scholar 

  • Johnson RH, Hull-Sanders HM, Meyer GA (2007) Comparison of foliar terpenes between native and invasive Solidago gigantea. Biochem Syst Ecol 35(12):821–830

    Article  CAS  Google Scholar 

  • Kagan J, Kolyvas CP, Lam J (1980) The ovicidal activity of cis-dehydromatricaria ester: time-dependance of its enhancement by UV light. Experientia 40:1396–1397

    Article  Google Scholar 

  • Kalemba D, Marschall H, Bradesi P (2001) Constituents of the essential oil of Solidago gigantea Ait (Giant goldenrod). Flav Fragr J 16:19–26

    Article  CAS  Google Scholar 

  • Kobayashi A, Morimoto S, Shibata Y, Yamashita K, Numata M (1980) C10-polyacetylenes as allelopathic substances in dominants in early stages of secondary succession. J Chem Ecol 6(1):119–131

    Article  CAS  Google Scholar 

  • Krügel T, Lim M, Gase K, Halitschke R, Baldwin IT (2002) Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system. Chemoecology 12:177–183

    Article  Google Scholar 

  • Kuhnel E, Laffan DDP, Lloyd-Jones GC, del Campo TM, Shepperson IR, Slaughter JL (2007) Mechanism of methyl esterification of carboxylic acids by trimethylsilyldiazomethane. Angew Chem Int Ed 46:7075–7078

    Article  Google Scholar 

  • Lewinsohn E, Savage TJ, Gijzen M, Croteau R (1993) Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresin. Phytochem Meth 4:220–225

    Article  CAS  Google Scholar 

  • Liu J, Liang SC, Liu FH, Wang RQ, Dong M (2005) Invasive alien plant species in China: regional distribution patterns. Div Dist 11:341–347

    Article  Google Scholar 

  • Lu T, Menelaou MA, Vargas D, Fronczek FR, Fisher NH (1993) Polyacetylenes and diterpenes from Solidago canadensis. Phytochemistry 32(6):1483–1488

    Article  CAS  Google Scholar 

  • Maddox GD, Root R (1990) Structure of the encounter between goldenrod (Solidago altissima) and its diverse insect fauna. Ecology 71(6):2115–2124

    Article  Google Scholar 

  • Maddox GD, Cook RE, Wimberger PH, Gardescu S (1989) Clone structure in four Solidago altissima (Asteraceae) populations: rhizome connections within genotypes. Am J Bot 76:318–326

    Article  Google Scholar 

  • Manabe S, Nishino C (1986) Stereochemistry of cis-clerodane diterpenes. Tetrahedron 42(13):3461–3470

    Article  CAS  Google Scholar 

  • Matsunaga H, Katano M, Tasaki M, Yamamoto H, Mori M, Takata K (1990) Inhibitory effect of cis-dehydromatricaria ester isolated from Solidago altissima on the growth of mammalian cells. Chem Pharm Bull 38(12):3483–3484

    CAS  PubMed  Google Scholar 

  • McLachlan D, Arason T, Lam J (1984) Structure–function relationships in the phototoxicity of acetylenes from the Asteraceae. Biochem Syst Ecol 14(1):17–23

    Article  Google Scholar 

  • Merritt AT, Ley SV (1992) Clerodane diterpenoids. Nat Prod Rep 9:243–286

    Article  CAS  PubMed  Google Scholar 

  • Meyer AH, Schmid B (1999a) Experimental demography of the old-field perennial Solidago altissima: the dynamics of the shoot population. J Ecol 87(1):17–27

    Article  Google Scholar 

  • Meyer AH, Schmid B (1999b) Seed dynamics and seedling establishment in the invading perennial Solidago altissima under different experimental treatments. J Ecol 87(1):28–41

    Article  Google Scholar 

  • Meyer G, Clare R, Weber E (2005) An experimental test of the evolution of increased competitive ability hypothesis in goldenrod, Solidago gigantea. Oecologia 144:299–307

    Article  PubMed  Google Scholar 

  • Morrow PA, Olfelt JP (2003) Phoenix clones: recovery after long-term defoliation induced dormancy. Ecol Lett 6:119–125

    Article  Google Scholar 

  • Preus LE, Morrow PA (1999) Direct and indirect effects of two herbivore species on resource allocation in their shared host plant: the rhizome galler Eurosta comma, the folivore Trirhabda canadensis and Solidago missouriensis. Oecologia 119:219–226

    Article  Google Scholar 

  • Rhoades DF (1979) Evolution of plant defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary metabolites. Academic Press, New York, pp 1–55

    Google Scholar 

  • Root RB, Cappuccino N (1992) Patterns in population change and the organization of the insect community associated with goldenrod. Ecol Monogr 62:393–420

    Article  Google Scholar 

  • Rostas M, Eggert K (2008) Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defense hypothesis. Chemoecology 18:29–38

    Article  CAS  Google Scholar 

  • Sawabe A, Minimoto K, Ouchi S, Okamoto K (1999) Effects of acetylenes and terpenoids from Solidago altissima L. on seed germination. J Jpn Oil Chem Soc 48(2):139–142

    CAS  Google Scholar 

  • Sawabe A, Minimoto K, Minematsu T, Morita M, Ouchi S, Okamoto T (2000) Characterization of acetylenes and terpenoids isolated from Solidago altísima L. Bull Inst Compr Agr Sci Kinki Univ 8:81–88

    CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100(18):10552–10557

    Article  CAS  PubMed  Google Scholar 

  • Semple JC, Cook RE (2006) Solidago. In: Flora North America Editorial Committee (ed) Flora of North America. Oxford University Press, Oxford, pp 107–166

  • Tori M, Katto A, Sono M (1999) Nine new clerodane diterpenoids from rhizomes of Solidago altissima. Phytochemistry 52:487–493

    Article  CAS  Google Scholar 

  • Tsao R, Eto M (1996) Light-activated plant growth inhibitory activity of cis-dehydromatricaria ester, rose bengal and fluoren-9-one on lettuce (Lactuca sativa L.). Chemosphere 32(7):1307–1317

    Article  CAS  Google Scholar 

  • Weber E (2001) Current and potential ranges of three exotic goldenrods (Solidago) in Europe. Conserv Biol 15:122–128

    Google Scholar 

  • Werner PA, Bradbury IK, Gross RS (1980) The biology of Canadian weeds. 45. Solidago canadensis L. Can J Plant Sci 60:1393–1409

    Article  Google Scholar 

  • Zhang Q, Yao LJ, Yang RY, Yang XY, Tang JJ, Chen X (2007) Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J 20(1):71–78

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a USDA Federal Formula Fund grant (NYC-183420), Cornell University and a Medaille College sabbatical grant. The authors thank Richard Root for fruitful Solidago discussions and technical assistance, Anarag Agrawal for providing A. syriaca seeds and Paul Feeny for the generous use of laboratory facilities. The authors also thank two anonymous reviewers and the editorial staff for substantial improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.H., Halitschke, R. & Kessler, A. Simultaneous analysis of tissue- and genotype-specific variation in Solidago altissima (Asteraceae) rhizome terpenoids, and the polyacetylene dehydromatricaria ester. Chemoecology 20, 255–264 (2010). https://doi.org/10.1007/s00049-010-0055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-010-0055-1

Keywords

Navigation