Skip to main content
Log in

Folate-conjugated organic CO prodrugs: Synthesis and CO release kinetic studies

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is an endogenously produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a bimolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal reaction without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Shoshan MC, Linder S. Target specificity and off-target effects as determinants of cancer drug efficacy. Expert Opin Drug Metab Toxicol. 2008;4:273–80. https://doi.org/10.1517/17425255.4.3.273

    Article  CAS  PubMed  Google Scholar 

  2. Sahoo S, Kariya T, Ishikawa K. Targeted delivery of therapeutic agents to the heart. Nat Rev Cardiol. 2021;18:389–99. https://doi.org/10.1038/s41569-020-00499-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3–19. https://doi.org/10.1158/1541-7786.Mcr-19-0582

    Article  CAS  PubMed  Google Scholar 

  4. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: Current status and future directions. Drug Discov Today. 2014;19:869–81. https://doi.org/10.1016/j.drudis.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Rel. 2011;153:198–205. https://doi.org/10.1016/j.jconrel.2011.06.001

    Article  CAS  Google Scholar 

  6. Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, et al. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B. 2021;11:2798–818. https://doi.org/10.1016/j.apsb.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  7. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62. https://doi.org/10.1016/s0169-409x(99)00062-9

    Article  CAS  PubMed  Google Scholar 

  8. Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, et al. Folate receptor as a biomarker and therapeutic target in solid tumors. Curr Probl Cancer. 2023;47:100917 https://doi.org/10.1016/j.currproblcancer.2022.100917

    Article  PubMed  Google Scholar 

  9. Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol. 2020;17:349–59. https://doi.org/10.1038/s41571-020-0339-5

    Article  PubMed  Google Scholar 

  10. Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem. 2010;53:6811–24. https://doi.org/10.1021/jm100509v

    Article  CAS  PubMed  Google Scholar 

  11. Vlahov IR, Leamon CP. Engineering folate-drug conjugates to target cancer: from chemistry to clinic. Bioconjug Chem. 2012;23:1357–69. https://doi.org/10.1021/bc2005522

    Article  CAS  PubMed  Google Scholar 

  12. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9. https://doi.org/10.1021/ar7000815

    Article  CAS  PubMed  Google Scholar 

  13. Poh S, Putt KS, Low PS. Folate-targeted dendrimers selectively accumulate at sites of inflammation in mouse models of ulcerative Colitis and Atherosclerosis. Biomacromolecules. 2017;18:3082–8. https://doi.org/10.1021/acs.biomac.7b00728

    Article  CAS  PubMed  Google Scholar 

  14. De La Cruz LK, Yang X, Menshikh A, Brewer M, Lu W, Wang M, et al. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem Sci. 2021;12:10649–54. https://doi.org/10.1039/d1sc02711e

    Article  CAS  PubMed  Google Scholar 

  15. Ji X, Zhou C, Ji K, Aghoghovbia RE, Pan Z, Chittavong V, et al. Click and release: a chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels-Alder reaction. Angew Chem Int Ed Engl. 2016;55:15846–51. https://doi.org/10.1002/anie.201608732

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Otterbein LE. Carbon monoxide in drug discovery: basics, pharmacology, and therapeutic potential. John Wiley & Sons; 2022.

  17. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8. https://doi.org/10.1038/74680

    Article  CAS  PubMed  Google Scholar 

  18. Ji X, Pan Z, Li C, Kang T, De La Cruz LKC, Yang L, et al. Esterase-sensitive and pH-controlled carbon monoxide prodrugs for treating systemic inflammation. J Med Chem. 2019;62:3163–8. https://doi.org/10.1021/acs.jmedchem.9b00073

    Article  CAS  PubMed  Google Scholar 

  19. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688–94. https://doi.org/10.1152/ajplung.1999.276.4.L688

    Article  CAS  PubMed  Google Scholar 

  20. Kyokane T, Norimizu S, Taniai H, Yamaguchi T, Takeoka S, Tsuchida E, et al. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology. 2001;120:1227–40. https://doi.org/10.1053/gast.2001.23249

    Article  CAS  PubMed  Google Scholar 

  21. Zuckerbraun BS, Billiar TR, Otterbein SL, Kim PK, Liu F, Choi AM, et al. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med. 2003;198:1707–16. https://doi.org/10.1084/jem.20031003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Correa-Costa M, Gallo D, Csizmadia E, Gomperts E, Lieberum JL, Hauser CJ, et al. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci USA. 2018;115:E2302–e10. https://doi.org/10.1073/pnas.1716747115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, et al. Carbon monoxide-loaded red blood cell prevents the onset of cisplatin-induced acute kidney injury. Antioxidants. 2023;12. https://doi.org/10.3390/antiox12091705.

  24. Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, et al. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett. 2022;546:215831 https://doi.org/10.1016/j.canlet.2022.215831

    Article  CAS  PubMed  Google Scholar 

  25. Romao CC, Blattler WA, Seixas JD, Bernardes GJ. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev. 2012;41:3571–83. https://doi.org/10.1039/c2cs15317c

    Article  CAS  PubMed  Google Scholar 

  26. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43. https://doi.org/10.1038/nrd3228

    Article  CAS  PubMed  Google Scholar 

  27. Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon monoxide and its controlled release: therapeutic application, detection, and development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem. 2018;61:2611–35. https://doi.org/10.1021/acs.jmedchem.6b01153

    Article  CAS  PubMed  Google Scholar 

  28. Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol. 2023;214:115642 https://doi.org/10.1016/j.bcp.2023.115642

    Article  CAS  PubMed  Google Scholar 

  29. Alghazwat O, Talebzadeh S, Oyer J, Copik A, Liao Y. Ultrasound responsive carbon monoxide releasing micelle. Ultrason Sonochem. 2021;72:105427 https://doi.org/10.1016/j.ultsonch.2020.105427

    Article  CAS  PubMed  Google Scholar 

  30. Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, et al. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol. 2014;2:739–48. https://doi.org/10.1016/j.redox.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinemann SH, Hoshi T, Westerhausen M, Schiller A. Carbon monoxide–physiology, detection and controlled release. Chem Commun. 2014;50:3644–60. https://doi.org/10.1039/c3cc49196j

    Article  CAS  Google Scholar 

  32. Aucott BJ, Ward JS, Andrew SG, Milani J, Whitwood AC, Lynam JM, et al. Redox-tagged Carbon Monoxide-Releasing Molecules (CORMs): Ferrocene-Containing [Mn(C;N)(CO)(4)] Complexes as a Promising New CORM Class. Inorg Chem. 2017;56:5431–40. https://doi.org/10.1021/acs.inorgchem.7b00509

    Article  CAS  PubMed  Google Scholar 

  33. Steiger C, Luhmann T, Meinel L. Oral drug delivery of therapeutic gases - carbon monoxide release for gastrointestinal diseases. J Control Rel. 2014;189:46–53. https://doi.org/10.1016/j.jconrel.2014.06.025

    Article  CAS  Google Scholar 

  34. Anderson SN, Richards JM, Esquer HJ, Benninghoff AD, Arif AM, Berreau LM. A structurally-tunable 3-Hydroxyflavone motif for visible light-induced Carbon Monoxide-Releasing Molecules (CORMs). ChemistryOpen. 2015;4:590–4. https://doi.org/10.1002/open.201500167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poloukhtine A, Popik VV. Highly efficient photochemical generation of a triple bond: synthesis, properties, and photodecarbonylation of cyclopropenones. J Org Chem. 2003;68:7833–40. https://doi.org/10.1021/jo034869m

    Article  CAS  PubMed  Google Scholar 

  36. Abeyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org Biomol Chem. 2017;15:8692–9. https://doi.org/10.1039/c7ob01674c

    Article  CAS  PubMed  Google Scholar 

  37. Palao E, Slanina T, Muchova L, Solomek T, Vitek L, Klan P. Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. J Am Chem Soc. 2016;138:126–33. https://doi.org/10.1021/jacs.5b10800

    Article  CAS  PubMed  Google Scholar 

  38. Min Q, Ni Z, You M, Liu M, Zhou Z, Ke H, et al. Chemiexcitation-triggered prodrug activation for targeted carbon monoxide delivery. Angew Chem Int Ed Engl. 2022;61:e202200974 https://doi.org/10.1002/anie.202200974

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS. Mechanically triggered carbon monoxide release with turn-on aggregation-induced emission. J Am Chem Soc. 2022;144:1125–9. https://doi.org/10.1021/jacs.1c12108

    Article  CAS  PubMed  Google Scholar 

  40. Xing L, Wang B, Li J, Guo X, Lu X, Chen X, et al. A fluorogenic ONOO(-)-triggered carbon monoxide donor for mitigating brain ischemic damage. J Am Chem Soc. 2022;144:2114–9. https://doi.org/10.1021/jacs.2c00094

    Article  CAS  PubMed  Google Scholar 

  41. Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, et al. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med. 2022;14:eabl4135 https://doi.org/10.1126/scitranslmed.abl4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, et al. Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomol Chem. 2013;11:6671–4. https://doi.org/10.1039/c3ob41385c

    Article  CAS  PubMed  Google Scholar 

  43. Belcher JD, Gomperts E, Nguyen J, Chen C, Abdulla F, Kiser ZM, et al. Oral carbon monoxide therapy in murine sickle cell disease: Beneficial effects on vaso-occlusion, inflammation and anemia. PLoS One. 2018;13:e0205194 https://doi.org/10.1371/journal.pone.0205194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan Z, Chittavong V, Li W, Zhang J, Ji K, Zhu M, et al. Organic CO Prodrugs: Structure-CO-release rate relationship studies. Chemistry. 2017;23:9838–45. https://doi.org/10.1002/chem.201700936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng Y, Ji X, Yu B, Ji K, Gallo D, Csizmadia E, et al. Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat Chem. 2018;10:787–94. https://doi.org/10.1038/s41557-018-0055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang D, Viennois E, Ji K, Damera K, Draganov A, Zheng Y, et al. A click-and-release approach to CO prodrugs. Chem Commun. 2014;50:15890–3. https://doi.org/10.1039/c4cc07748b

    Article  CAS  Google Scholar 

  47. Ji X, De La Cruz LKC, Pan Z, Chittavong V, Wang B. pH-Sensitive metal-free carbon monoxide prodrugs with tunable and predictable release rates. Chem Commun. 2017;53:9628–31. https://doi.org/10.1039/c7cc04866a

    Article  CAS  Google Scholar 

  48. Pan Z, Zhang J, Ji K, Chittavong V, Ji X, Wang B. Organic CO prodrugs activated by endogenous ROS. Org Lett. 2018;20:8–11. https://doi.org/10.1021/acs.orglett.7b02775

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Wang Y, Liu M, Pan Y, Ni Z, Min Q, et al. Reactive oxygen species-activated metal-free carbon monoxide prodrugs for targeted cancer treatment. J Med Chem. 2023;66:14583–96. https://doi.org/10.1021/acs.jmedchem.3c01056

    Article  CAS  PubMed  Google Scholar 

  50. Kueh JTB, Stanley NJ, Hewitt RJ, Woods LM, Larsen L, Harrison JC, et al. Norborn-2-en-7-ones as physiologically-triggered carbon monoxide-releasing prodrugs. Chem Sci. 2017;8:5454–9. https://doi.org/10.1039/c7sc01647f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bell NT, Payne CM, Sammut IA, Larsen DS. Mechanistic studies of carbon monoxide release from Norborn‐2‐en‐7‐one CORMs. Asian J Org Chem. 2022;11:e202200350.

    Article  CAS  Google Scholar 

  52. Thiang Brian Kueh J, Seifert‐Simpson JM, Thwaite SH, Rodgers GD, Harrison JC, Sammut IA, et al. Studies towards non‐toxic, water soluble, vasoactive norbornene organic carbon monoxide releasing molecules. Asian J Org Chem. 2020;9:2127–35.

    Article  CAS  Google Scholar 

  53. Ji X, Ji K, Chittavong V, Yu B, Pan Z, Wang B. An esterase-activated click and release approach to metal-free CO-prodrugs. Chem Commun. 2017;53:8296–9. https://doi.org/10.1039/c7cc03832a

    Article  CAS  Google Scholar 

  54. Trindade AF, Frade RF, Maçôas EM, Graça C, Rodrigues CA, Martinho JM, et al. Click and go”: simple and fast folic acid conjugation. Org Biomol Chem. 2014;12:3181–90. https://doi.org/10.1039/c4ob00150h

    Article  CAS  PubMed  Google Scholar 

  55. Santos FMF, Matos AI, Ventura AE, Gonçalves J, Veiros LF, Florindo HF, et al. Modular assembly of reversible multivalent cancer-cell-targeting drug conjugates. Angew Chem Int Ed Engl. 2017;56:9346–50. https://doi.org/10.1002/anie.201703492

    Article  CAS  PubMed  Google Scholar 

  56. Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B. 2023;13:1990–2016. https://doi.org/10.1016/j.apsb.2022.10.015

    Article  CAS  PubMed  Google Scholar 

  57. De La Cruz LK, Ji X, Yang X, Wang B. Click, release, and fluoresce: In-vivo generation of CO with concomitant synthesis of a fluorescent reporter. Bioorg Med Chem. 2021;44:116297 https://doi.org/10.1016/j.bmc.2021.116297

    Article  CAS  PubMed  Google Scholar 

  58. Ji X, Wang B. Strategies toward organic carbon monoxide prodrugs. Acc Chem Res. 2018;51:1377–85. https://doi.org/10.1021/acs.accounts.8b00019

    Article  CAS  PubMed  Google Scholar 

  59. Breslow R. Hydrophobic effects on simple organic reactions in water. Acc Chem Res. 1991;24:159–64.

    Article  CAS  Google Scholar 

  60. Li S, Yu B, Wang J, Zheng Y, Zhang H, Walker MJ, et al. Biomarker-based metabolic labeling for redirected and enhanced immune response. ACS Chem Biol. 2018;13:1686–94. https://doi.org/10.1021/acschembio.8b00350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Institutes of Health for our CO-related work (R01DK119202 for CO and colitis; R01DK128823 for CO and acute kidney injury). We also acknowledge financial support from the Georgia Research Alliance in the form of an Eminent Scholar endowment (BW), the Dr. Frank Hannah Chair endowment (BW), and other GSU internal resources. Mass spectrometric analyses were conducted by the Georgia State University Mass Spectrometry Facilities, which are partially supported by an NIH grant for the purchase of a Waters Xevo G2-XS Mass Spectrometer (1S10OD026764-01). Figure 2 is generated with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghe Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondengadan, S.M., Bansal, S., Yang, X. et al. Folate-conjugated organic CO prodrugs: Synthesis and CO release kinetic studies. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03232-0

Keywords

Navigation