Skip to main content

Advertisement

Log in

Insights on synthetic strategies and structure-activity relationship of donepezil and its derivatives

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This comprehensive review focuses on the synthesis and derivatives of donepezil, a pivotal Alzheimer’s disease (AD) medication introduced in 1997. As a selective acetylcholinesterase inhibitor with 100% oral bioavailability and a 70-h half-life, donepezil’s success in neurodegenerative disorder management has spurred extensive research into its synthesis and structural modifications. The review examines diverse synthetic approaches, evaluating their efficiency, cost, toxicity, and scalability. Methods range from traditional hazardous chemicals to eco-friendly strategies. Structural modifications and their impact on biological activities are explored, emphasizing their role in developing therapeutic agents for neurodegenerative diseases. The versatility of donepezil in drug design is demonstrated through discussions on analogues and hybrids, including those with lipoic and ferulic acid. Given projections of increased AD cases, the synthesis and modification of drugs like donepezil gain paramount importance. This review consolidates information for medicinal chemists, offering insights to guide the development of efficient compounds for neurodegenerative disorder management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 2
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AChEI:

Acetylcholinesterase inhibitor

APP:

Amyloid precursor protein

Aβ :

Amyloid beta

BACE1:

Beta-secretase 1

CA1:

Cornu ammonis

CYTA:

1-(mercaptomethyl)cyclopropane acetic acid

DCFH-DA:

Dichloro-dihydro-fluorescein diacetate

DIPEA:

N,N-diisopropylethylamine

DPPH:

2,2-diphenyl-1-picrylhydrazyl

hAChE:

Human acetylcholinesterase

HepG2:

Human liver cancer cell line

HMPA:

Hexamethylphosphoramide

HMPTA:

Hexamethylphosphoric triamide

LOX:

Leukotriene

LPS:

Lipopolysaccharide

MTDLs:

Multi-target directed ligands

MTT:

Methyl thiazolyl tetrazolium

NMR:

Nuclear magnetic resonance

PAMPA:

Parallel artificial membrane permeability assay

PAS:

Peripheral anionic site

PBMC:

Peripheral blood mononuclear cells

PyBOP:

Benzotriazol-1-yloxy-tripyrrolidinophosphonium hexafluorophosphate

TEM:

Transmission Electron Microscopy

THT:

Thioflavin T

TNFα :

Tumor necrosis factor alpha

USFDA:

U.S. Food and Drug Administration

VDCC:

Voltage dependent calcium channel

References

  1. Greunen DG, Cordier W, Nell M, Westhuyzen CV, Steenkamp V, Panayides JL, et al. Targeting Alzheimer’s disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil. Eur J Med Chem. 2019;127:671–90.

    Article  Google Scholar 

  2. Akhoon BA, Choudhary S, Tiwari H, Kumar A, Barik MR, Rathor L, et al. Discovery of a new donepezil-like acetylcholinesterase inhibitor for targeting Alzheimer’s disease: computational studies with biological validation. J Chem Inf Model. 2020;60:4717–29.

    Article  CAS  PubMed  Google Scholar 

  3. Doody RS, Cummings JL, Farlow MR. Reviewing the role of donepezil in the treatment of Alzheimer’s disease. Curr Alzheimer Res. 2012;9:773–81.

    Article  CAS  PubMed  Google Scholar 

  4. Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat. 2007;3:303–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain S, Bisht A, Verma K, Negi S, Paliwal S, Sharma S. The role of fatty acid amide hydrolase enzyme inhibitors in Alzheimer’s disease. Cell Biochem Funct. 2021;40:1–12.

    Google Scholar 

  6. Katzman R. The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol. 1976;33:217–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain J Neurol. 2018;141:1917–33.

    Article  Google Scholar 

  8. Dementia homepage, https://www.who.int/news-room/fact-sheets/detail/dementia Accessed Jul 2021.

  9. Number of cases of Alzheimer’s disease in senior citizens across India from 2011 to 2050 (in million) homepage, https://www.statista.com/statistics/944170/india-number-of-cases-of-alzheimer-s-disease-in-senior-citizens/, Accessed Jul 2021.

  10. Alzheimer’s association report, 2021. Alzheimer’s Dement 17, 327-406.

  11. Sugimoto H, Tsuchiya Y, Sugumi H, Higurashi K, Karibe N, Imura Y. et al. Novel piperidine derivatives. Synthesis and anti-acetylcholinesterase activity of 1-benzyl-4-2[2-(N-benzoylamino)ethyl]piperidine derivatives. J. Med. Chem.1990;33:1880–7.

  12. Sugimoto H, Tsuchiya Y, Sugumi H, Higurashi K, Karibe N, Imura Y, et al. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: l-benzyl-4-(2-phthalimidoethyl)piperidinaen d related derivatives. J Med Chem 1992;35:4542–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sugimoto H, Imura Y, Yamanishi Y, Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-l-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J. Med. Chem.1995;38:4821–9.

  14. Eleti CR, Kolla NK, Chalamala SR, Vankawala PJ, Sundaram V. New synthesis of donepezil through palladium-catalyzed hydrogenation approach. Synth Commun 2006;36:169–74.

    Article  Google Scholar 

  15. Rao RJ, Rao AK. Efficient and industrially viable synthesis of donepezil. Synth Commun 2007;37:2847–53.

    Article  CAS  Google Scholar 

  16. Rawat AS, Pande S, Bhatt N, Khratkar R, Belwal C, Vardhan A, et al. Synthesis of donepezil hydrochloride via chemoselective hydrogenation. Org Process Res Dev 2013;17:16–17.

    Article  Google Scholar 

  17. Takashi E, Akio I, Hiroshi N, Takeo K. Production of donepezil. JP Pat 1999;11:171861.

    Google Scholar 

  18. Miwa K, Aoyama T, Shioiri T. A new synthesis of aldehydes from ketones utilizing trimethylsilyldiazomethane. Synlett. 1994, 109.

  19. Iimura Y, Mishima M, Sugimoto H. Synthesis of 1-benzyl-4-[(5,6-dimethoxy[2-14C]-1-indanon)-2-yl]-methylpiperidine hydrochloride (E2020-14C). J. Label. Compd. Radiopharm.1989;27:835–9.

  20. Sugimoto H, Tsuchiya Y, Higurashi K 1992. Cyclic amine compounds and pharmaceutical Use. U.S. Patent 5,100,901.

  21. Sugimoto, H, 1988. Cyclic amine compound, its use and pharmaceutical compositions comprising it. EP 296560.

  22. Stephen, L, 1997. Process for the preparation of benzyl-piperidylmethyl- indanones. U.S. Patent 5,606,064.

  23. Shrinivasrao, A, Venkateshwarlu, Y, 2008. An improved process for the preparation of donepezil. WO Patent 010235.

  24. Niphade N, Mali A, Jagtap K, Ojha RC, Vankawala PJ, Mathad VT. An improved and efficient process for the production of donepezil hydrochloride: Substitution of sodium hydroxide for n-butyl lithium via phase transfer catalysis. Org Process Res Dev 2008;12:731–5.

    Article  CAS  Google Scholar 

  25. Mori A, Miyakawa Y, Ohashi E, Haga T, Maegawa T, Sajiki H. Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide. Org Lett 2006;8:3279–81.

    Article  CAS  PubMed  Google Scholar 

  26. Maegawa T, Fujita Y, Sakurai A, Akashi A, Sato M, Oono K, et al. Pd/C(en) catalysed chemoselective hydrogenation in the presence of aryl nitriles. Chem Pharm Bull 2007;55:837–9.

    Article  CAS  Google Scholar 

  27. Dubey S, Kharbanda M, Dubey SK, Mathela C. A new commercially viable synthetic route for donepezil hydrochloride: Anti-Alzheimer’s Drug. Chem Pharm Bull 2010;58:1157–60.

    Article  CAS  Google Scholar 

  28. Enders D, Hett R Asymmetric synthesis of α’-silylated α, β-epoxy ketones via Darzens reaction. Synlett. 1998; 961-2.

  29. Pathi SL, Acharya V, Rao DR, Kankan RN 2009. Process and intermediate for preparation of donepezil. U.S. Patent 20090187020.

  30. Barluenga J, Baragatna B, Concellon JM, Pifiera NA, Diaz MR, Garcia GS. Synthesis of enantiopure α’-amino α,β-epoxy ketones from α’-amino bromomethyl ketones. J Org Chem. 1999;64:5048–52.

    Article  CAS  PubMed  Google Scholar 

  31. Ley SV, Mitchell C, Pears D, Ramarao C, Yu JQ, Zhou W. Recyclable polyuria-microencapsulated Pd(0) nanoparticles: An efficient catalyst for hydrogenolysis of epoxides. Org Lett 2003;24:4665–8.

    Article  Google Scholar 

  32. Broadwater SJ, Quade DT. Investigating PdEnCat catalysis. J Org Chem 2006;71:2131–4.

    Article  CAS  PubMed  Google Scholar 

  33. Ley SV, Liddon AS, Pears D, Perni RH, Treacher KE, Matosevic S, et al. Hydrogenation of aromatic ketones, aldehydes, and epoxides with hydrogen and Pd(0)EnCat(TM) 30NP. J Org Chem 2006;2:1–5.

    Google Scholar 

  34. Elphimoff MI, Sarda P. Reduction of some alcohols, ethers and allylic acetates to olefins by zinc and hydrochloric acid in ether. Tetrahedron Lett. 1972;13:725–8.

    Article  Google Scholar 

  35. He G, Ma J, Zhou J, Li C, Liu H, Zhou Y. A metal-free method for the facile synthesis of indanones via the intramolecular hydroacylation of 2-vinylbenzaldehyde. Green Chem. 2021;23:1036–40.

    Article  CAS  Google Scholar 

  36. Terra B, Silva P, Tramarin A, Franco L, Cunha E, Junior F, et al. Two novel donepezil-lipoic acid hybrids: synthesis, anticholinesterase and antioxidant activities and theoretical studies. J Braz Chem Soc 2018;29:738–47.

    CAS  Google Scholar 

  37. Barbe G, Charette AB. Highly chemoselective metal-free reduction of tertiary amides. J Am Chem Soc. 2008;130:18–19.

    Article  CAS  PubMed  Google Scholar 

  38. Muhlhausen U, Ermert J, Herth MM, Coenen HH. Synthesis, radioflourination and first evaluation of (±)-[18F]MDL 100907 as serotonin 5-HT2A receptor antagonist for PET. J Label Compd Radiopharm 2008;52:6–12.

    Article  Google Scholar 

  39. Omura K, Swern D. Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron. 1978;34:1651–60.

    Article  CAS  Google Scholar 

  40. Huang L, Hao X, Mu S, Zhang J 2011. Production method of donepezil hydrochloride. CN Patent102127006.

  41. Gant TG, Sarshar S, Shahbaz., MM 2010. Indanone inhibitors of acetylcholinesterase. U.S. Patent20100143505.

  42. Stahl GL, Walter R, Smith CW. General procedure for the synthesis of mono-N-acylated 1,6-diaminohexanes. J Org Chem 1978;43:2285–6.

    Article  CAS  Google Scholar 

  43. Schieferdecker S, Nett M. A fast and efficient method for the preparation of the 5-lipoxygenase inhibitor myxochelin A. Tetrahedron Lett. 2016;57:1359–60.

    Article  CAS  Google Scholar 

  44. Luescher MU, Vo CV, Bode JW. SnAP reagents for the synthesis of piperazines and morpholines. Org Lett 2014;16:1236–9.

    Article  CAS  PubMed  Google Scholar 

  45. Szabo M, Herenbrink C, Christopoulos A, Lane JR, Capuano B. Structure-activity relationships of privileged structures lead to the discovery of novel biased ligands at the dopamine D2 receptor. J Med Chem. 2014;57:4924–39.

    Article  CAS  PubMed  Google Scholar 

  46. Halim M, Tremblay MS, Jockusch S, Turro NJ, Sames D. Transposing molecular fluorescent switches into the near IR: Development of luminogenic reporter substrates for redox metabolism. J Am Chem Soc. 2007;129:7704–5.

    Article  CAS  PubMed  Google Scholar 

  47. Costanzo P, Cariati L, Desiderio D, Sgammato R, Lamberti A, Arcone R. Design, synthesis, and evaluation of donepezil like compounds as AChE and BACE-1 inhibitors. ACS Med, Chem, Lett. 2016;7:470–5.

    Article  CAS  PubMed  Google Scholar 

  48. Lensky, S, 1997. Process for the preparation of benzyl-piperidylmethyl-indanones. U.S. Patent 005606064A.

  49. Andrzej, M Process for the preparation of Donepezil and intermediate compounds thereof as well as hydrates of Donepezil, WO 2007/015052 A1.

  50. Gaonkar S, Nadaf Y, Bilehal D, Shetty N. Industrially scalable synthesis of anti-Alzheimer drug donepezil. Asian J Chem 2017;29:1999–2004.

    Article  CAS  Google Scholar 

  51. Gutman, AL, Shkolnik, E, Tishan, B, Nisnevich, G, Zaltzman, I, 2000. Process and intermediates for production of donepezil and related compounds. U.S. Patent 6,492,522 B1.

  52. Iimura, Y, Ninomiya, TI, 1999. WO 99/36405.

  53. Mahmoud Z, Sayed H, Mohamed L, Mohamed K. Development of new donepezil analogs: synthesis, biological screening and in silico study rational. Med Chem Res. 2022;31:1754–70.

    Article  CAS  Google Scholar 

  54. Wang Y, Wang H, Chen H. AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of Alzheimer’s disease. Curr Neuropharmacol 2016;14:364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51:347–72.

    Article  CAS  PubMed  Google Scholar 

  56. Sugimoto H, Tsuchiya Y, Higurashi K, Karibe N, Iimura Y, Sasaki A, et al. 1990. Cyclic amine compounds with activity against acetylcholinesterase. U.S. Patent 4895841.

  57. Simoes MC, Viegas FP, Moreira MS, Silva MF, Riquiel MM, Rosa PM, et al. Donepezil: An important prototype to the design of new drug candidates for Alzheimer disease. Mini Rev Med Chem 2014;14:2–19.

    Article  CAS  Google Scholar 

  58. Benchekroun M, Ismaili L, Pudlo M, Luzet V, Gharbi T, Refouvelet B, et al. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. Future Med Chem 2015;7:15–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Alonso D, Dorronsoro I, Rubio L, Munoz P, Palomero E, Monte M, et al. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem 2005;13:6588–97.

    Article  CAS  PubMed  Google Scholar 

  60. Camps P, Formosa X, Galdeano C, Gomez T, Torrero D, Scarpellini M, et al. Novel donepezil-based inhibitors of acetyl-and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J Med Chem 2008;51:3588–98.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu Y, Xiao K, Ma L, Xiong B, Fu Y, Yu H, et al. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and β-secretase. Bioorg Med Chem 2009;17:1600–13.

    Article  CAS  PubMed  Google Scholar 

  62. Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, et al. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem 2013;21:146–52.

    Article  CAS  PubMed  Google Scholar 

  63. Lee SH, Kim BC, Kim JK, Lee HS, Shon MY, Park JH. Development of cholinesterase inhibitors using 1-benzyl piperidine-4-yl(α)-lipoic amide molecules. Bull Korean Chem Soc. 2014;35:1681–6.

    Article  CAS  Google Scholar 

  64. Prezzavento O, Arena E, Parenti C, Pasquinucci L, Arico G, Scoto GM, et al. Design and synthesis of new bifunctional sigma-1 selective ligands with antioxidant activity. J Med Chem. 2013;56:2447–55.

    Article  CAS  PubMed  Google Scholar 

  65. Gabr M, Raziq M. Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg Chem. 2018;80:245–52.

    Article  CAS  PubMed  Google Scholar 

  66. Azzouz R, Peauger L, Gembus V, Ţînţaş M, Santos J, Papamicael C. Novel donepezil-like N-benzylpyridinium salt derivatives as AChE inhibitors and their corresponding dihydropyridine “bio-oxidizable” prodrugs: Synthesis, biological evaluation and structure-activity relationship. Eur J Med Chem. 2018;145:165–90.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu G, Wang K, Shi J, Zhang P, Yang D, Fan X, et al. The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2019;29:126625.

    Article  CAS  PubMed  Google Scholar 

  68. Lan J, Zhang T, Liu Y, Yang J, Xie S, Liu J. Design, synthesis and biological activity of novel donepezil derivatives bearing N-benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors. Eur J Med Chem. 2017;133:184–96.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Z, Cai P, Liu Q, Xu D, Yang X, Wu J. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2016;123:282–97.

    Article  CAS  PubMed  Google Scholar 

  70. Renou J, Dias J, Mercey G, Verdelet T, Rousseau C, Gastellier J. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. Rsc Adv. 2016;6:17929–40.

    Article  ADS  CAS  Google Scholar 

  71. Zurek E, Szymanski P, Olasik E. Synthesis and biological activity of new donepezil-hydrazinonicotinamide hybrids. Drug Res. 2013;34:137–44.

    Google Scholar 

  72. Queda F, Calo S, Gwizdala K, Magalhaes J, Cardoso S, Chaves S, et al. Novel donepezil–arylsulfonamide hybrids as multitarget-directed ligands for potential treatment of Alzheimer’s disease. Molecules. 2021;26:1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guieu B, Lecoutey C, Legay R, Davis A, Santos J, Altomare C, et al. First synthesis of racemic trans propargylamino-donepezil, a pleiotrope agent able to both inhibit AChE and MAO-B, with potential pnterest against Alzheimer’s disease. Molecules. 2021;26:80.

    Article  CAS  Google Scholar 

  74. Viegas F, Silva M, Rocha M, Castelli M, Riquiel M, Machado R. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-arylacylhydrazone derivatives as donepezil hybrids: discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem. 2018;147:48–65.

    Article  CAS  PubMed  Google Scholar 

  75. Monjas L, Arce M, Leon R, Egea J, Perez C, Villarroya M. Enzymatic and solid-phase synthesis of new donepezil-based L-and D-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer’s disease and cerebral ischemia. Eur J Med Chem. 2017;130:60–72.

    Article  CAS  PubMed  Google Scholar 

  76. Ozer E, Tan O, Ozadali K, Kucukkilinc T, Balkan A, Uçar G. Synthesis, molecular modeling and evaluation of novel N′-2-(4- benzylpiperidin-/piperazin-1-yl) acylhydrazone derivatives as dual inhibitors for cholinesterases and Aβ aggregation. Bioorg Med Chem Lett. 2013;23:440–3.

    Article  CAS  Google Scholar 

  77. Chaves S, Resta S, Rinaldo F, Costa M, Josselin R, Gwizdala K, et al. Design, synthesis, and In vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. Molecules. 2020;25:985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zang Y, Liu K, Wang W, Li C, Ma J, Yang J, et al. Claulansine F–donepezil hybrids as anti-Alzheimer’s disease agents with cholinergic, free-radical scavenging, and neuroprotective activities. Molecules. 2021;26:1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li F, Wang Z, Wu J, Wan J, Xie S, Lan J. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. Enzyme. Inhib Med Chem. 2016;31:41–53.

    Article  CAS  Google Scholar 

  80. Samadi A, Fuente M, Perez C, Iriepa I, Moraleda I, Rodríguez M. Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: New dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease. Eur J Med Chem. 2013;67:64–74.

    Article  CAS  PubMed  Google Scholar 

  81. Samadi A, Estrada M, Perez C, Franco M, Iriepa I, Moraleda I. Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease: Synthesis, biological assessment, and molecular modeling. Eur J Med Chem. 2012;57:296–301.

    Article  CAS  PubMed  Google Scholar 

  82. Green K, Fosso M, Tsodikova S. Multifunctional donepezil analogues as cholinesterase and BACE1 inhibitors. Molecules. 2018;23:3252.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mishra B, Kumari S, Manral A, Prakash A, Saini V, Lynn M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;125:736–50.

    Article  CAS  PubMed  Google Scholar 

  84. Aliabadi A, Farani A, Bistouni J. Synthesis and acetylcholinesterase inhibitory assessment of benzamide derivatives incorporated piperazine moiety as potential anti–Alzheimer. Agents J Pharm Sci. 2017;9:1598–603.

    CAS  Google Scholar 

  85. Nan D, Gan S, Wang W, Qiao P, Wang M, Zhou N. 6-Methoxy-indanone derivatives as potential probes for β-amyloid plaques in Alzheimer’s disease. Eur J Med Chem. 2016;124:117–28.

    Article  CAS  PubMed  Google Scholar 

  86. Saglık N, Ilgın S, Ozkay Y. Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur J Med Chem. 2016;124:1026–40.

    Article  PubMed  Google Scholar 

  87. Yerdelen K, Koca M, Anil B, Sevindik H, Kasap Z, Halici Z. Synthesis of donepezil-based multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2015;25:5576–82.

    Article  CAS  PubMed  Google Scholar 

  88. Meng F, Mao F, Shan W, Qin F, Huang L, Li X. Design, synthesis, and evaluation of indanone derivatives as acetylcholinesterase inhibitors and metal-chelating agents. Bioorg Med Chem Lett. 2012;22:4462–6.

    Article  CAS  PubMed  Google Scholar 

  89. Ismail M, Kamel M, Mohamed W, Faggal I. Synthesis of new indole derivatives structurally related to donepezil and their biological evaluation as acetylcholinesterase inhibitors. Molecule. 2012;17:4811–23.

    Article  CAS  Google Scholar 

  90. Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A. Targeting Alzheimer’s disease: novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem. 2010;18:1749–60.

    Article  CAS  PubMed  Google Scholar 

  91. Farani A, Ahmadi A, Nadri H, Aliabadi A. Synthesis, docking and acetylcholinesterase inhibitory assessment of 2-(2-(4-benzylpiperazin-1-yl) ethyl) isoindoline-1, 3-dione derivatives with potential anti-Alzheimer effects. DARU. J Pharm Sci. 2013;21:47–56.

    Google Scholar 

  92. Ignasik M, Bajda M, Guzior N, Prinz M, Holzgrabe U, Malawska B. Design, synthesis and evaluation of novel 2‐(aminoalkyl)‐isoindoline‐1, 3‐dione derivatives as dual binding site acetylcholinesterase inhibitors. Arch Pharm. 2012;345:509–16.

    Article  CAS  Google Scholar 

  93. Song YH, Jo BS. Synthesis of new alkylene-linked donepezil amino thienoquinoline hybrid related derivatives. Bull Korean Chem Soc. 2009;30:969–71.

    Article  CAS  Google Scholar 

  94. Dias K, Paula T, Santos T, Souza N, Boni M, Guimaraes J. Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;130:440–57.

    Article  CAS  PubMed  Google Scholar 

  95. Sang Z, Pan W, Wang K, Ma Q, Yu L, Yang Y. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;130:379–92.

    Article  CAS  PubMed  Google Scholar 

  96. Xu W, Wang X, Wang Z, Wu J, Li F, Wang J. Synthesis and evaluation of donepezil–ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. Med Chem Comm. 2016;7:990–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to late Prof. Ina Aditya Shastri, Vice Chancellor, Banasthali Vidyapith, and Rajasthan, India for providing all necessary tools and sources for drafting this review article.

Author contributions

SP Preparation and creation of the article; SJ Editing and drawing of chemical structures; RG Data curation; SS Critical review and supervision of the manuscript; JD Editing and Supervision

Funding

This study received no particular support from public, commercial, or non-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Jain.

Ethics declarations

Conflict of interest

The authors declares no competing interests.

Consent for publication

All authors have read the manuscript and have given consent for its submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Jain, S., Gururani, R. et al. Insights on synthetic strategies and structure-activity relationship of donepezil and its derivatives. Med Chem Res 33, 370–405 (2024). https://doi.org/10.1007/s00044-024-03186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03186-3

Keywords

Navigation