Skip to main content
Log in

Design, synthesis and antimicrobial activities of 1,2,3-triazole hybrids with amine-ester functionality

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Due to the notable therapeutic importance of 1,4-disubstituted-1,2,3-triazoles linked with amine and ester groups, a series of 1,2,3-triazole hybrid containing amine-ester functionality have been synthesized. This synthesis involves a Cu(I) catalyzed [3 + 2] dipolar cycloaddition between N-substituted(prop-2-yn-1-yl)amines (3a–3d) and benzyl 2-azidoacetates (6a–6e). The triazoles were thoroughly characterized using different spectral techniques. In vitro assay of developed synthetics with different microbial strains including S. aureus, B. Subtilis, E. Coli, S. enterica, C albicans and R. Oryzae have been conducted. Moderate to excellent activity was observed from majority of the compounds against the tested strains. Notably, compound 7o (MIC = 0.0558 μmol/mL) exhibited substantial potency against most of the tested microbes. Furthermore, an ADME analysis was performed, indicating that the compounds possess a favorable profile and can be considered as patient compliant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg Chem. 2017;71:30–54. https://doi.org/10.1016/j.bioorg.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  2. Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg Med Chem. 2019;27:3511–31. https://doi.org/10.1016/j.bmc.2019.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lal K, Kumar L, Kumar A, Kumar A. Oxazolone–1,2,3-triazole hybrids: design, synthesis and antimicrobial evaluation. Curr Top Med Chem. 2018;18:1506–13. https://doi.org/10.2174/1568026618666180913110456.

    Article  CAS  PubMed  Google Scholar 

  4. Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity. Eur J Med Chem. 2014;77:145–54. https://doi.org/10.1016/j.ejmech.2014.03.016.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar L, Lal K, Kumar A, Paul AK, Kumar A. Pyrazoline tethered 1,2,3-triazoles: synthesis, antimicrobial evaluation and in silico studies. J Mol Struc. 2021;1246:31154–65. https://doi.org/10.1016/j.molstruc.2021.131154.

    Article  CAS  Google Scholar 

  6. Sindhu J, Singh H, Khurana JM, Bhardwaj JK, Saraf P, Sharma C. Synthesis and biological evaluation of some functionalized 1H-1, 2, 3-triazole tethered pyrazolo [3,4-b] pyridin-6(7H)-ones as antimicrobial and apoptosis inducing agents. Med Chem Res. 2016;25:1813–30. https://doi.org/10.1007/s00044-016-1604-0.

    Article  CAS  Google Scholar 

  7. Kumar L, Lal K, Kumar A, Kumar A. Synthesis, antimicrobial evaluation and docking studies of oxazolone-1,2,3-triazole-amide hybrids. Res Chem Intermed. 2021;47:5079–97. https://doi.org/10.1007/s11164-021-04588-3.

    Article  CAS  Google Scholar 

  8. Jiang X, Wu G, Zalloum WA, Meuser ME, Dick A, Sun L, et al. Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv. 2019;9:28961–86. https://doi.org/10.1039/C9RA05869A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, et al. A copper (I)-catalyzed 1,2,3-triazole azide−alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem. 2008;51:6263–70. https://doi.org/10.1021/jm800149m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng CY, Haque A, Hsieh MF, Hassan SI, Faizi MSH, Dege N, et al. 1,4-Disubstituted 1H-1,2,3-triazoles for renal diseases: studies of viability, anti-inflammatory, and antioxidant activities. Int J Mol Sci. 2020;21:3823. https://doi.org/10.3390/ijms21113823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies. Aust J Chem. 2013;66:1088–96. https://doi.org/10.1071/CH13217.

    Article  CAS  Google Scholar 

  12. Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, et al. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur J Med Chem. 2015;93:564–73. https://doi.org/10.1016/j.ejmech.2015.02.027.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar L, Lal K, Yadav P, Kumar A, Paul AK. Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struc. 2020;1216:128253. https://doi.org/10.1016/j.molstruc.2020.128253.

    Article  CAS  Google Scholar 

  14. Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem. 2021;111:104869. https://doi.org/10.1016/j.bioorg.2021.104869.

    Article  CAS  PubMed  Google Scholar 

  15. Kaushik CP, Sangwan J, Luxmi R, Kumar D, Kumar D, Das A, et al. Design, synthesis, anticancer and antioxidant activities of amide linked 1,4-disubstituted 1,2,3triazoles. JMolStruc. 2021;1226:129255. https://doi.org/10.1016/j.molstruc.2020.129255.

    Article  CAS  Google Scholar 

  16. El Malah T, Mageid REA, Awad HM, Nour HF. Copper (I)-catalysed azide–alkyne cycloaddition and antiproliferative activity of mono- and bis-1,2,3-triazole derivatives. New J Chem. 2020;44:18256–63. https://doi.org/10.1039/D0NJ04308G.

    Article  CAS  Google Scholar 

  17. Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of new 1,3,4-oxadiazole-incorporated 1,2,3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals. 2020;13:390. https://doi.org/10.3390/ph13110390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nipate AS, Jadhav CK, Chate AV, Deshmukh TR, Sarkate AP, Gill CH. Synthesis and in vitro anticancer activities of new 1,4‐disubstituted‐1,2,3‐triazoles derivatives through click approach. ChemistrySelect. 2021;6:5173–79. https://doi.org/10.1002/slct.202101035.

    Article  CAS  Google Scholar 

  19. Shinde V, Mahulikar P, Mhaske PC, Nawale L, Sarkar D. Synthesis and biological evaluation of new 2-aryl-4-((4-aryl-1H-1,2,3-triazol-1-yl) methyl) thiazole derivatives. Res Chem Intermed. 2018;44:1247–60. https://doi.org/10.1007/s11164-017-3164-4.

    Article  CAS  Google Scholar 

  20. Jagadale SM, Abhale YK, Pawar HR, Shinde A, Bobade VD, Chavan AP, et al. Synthesis of new thiazole and pyrazole clubbed 1,2,3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycycl Aroma Compd. 2020;1:1–22. https://doi.org/10.1080/10406638.2020.1857272.

    Article  CAS  Google Scholar 

  21. Garg A, Borah D, Trivedi P, Gogoi D, Chaliha AK, Ali AA, et al. A simple work-up-free, solvent-free approach to novel amino acid linked 1,4-disubstituted 1,2,3-triazoles as potent antituberculosis agents. ACS Omega. 2020;5:29830–37. https://doi.org/10.1021/acsomega.0c03862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faidallah HM, Panda SS, Serrano JC, Girgis AS, Khan KA, Alamry KA, et al. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg Med Chem. 2016;24:3527–39. https://doi.org/10.1016/j.bmc.2016.05.060.

    Article  CAS  PubMed  Google Scholar 

  23. Kaushik CP, Chahal M. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. Monatsh Chem. 2021;152:1001–12. https://doi.org/10.1007/s00706-021-02821-8.

    Article  CAS  Google Scholar 

  24. Almeida-Souza F, Silva VDD, Silva GX, Taniwaki NN, Hardoim DDJ, Buarque CD, et al. 1,4-Disubstituted-1,2,3-triazole compounds induce ultrastructural alterations in leishmania amazonensis promastigote: an in vitro antileishmanial and in silico pharmacokinetic study. Int J Mol Sci. 2020;21:6839–58. https://doi.org/10.3390/ijms21186839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pertino MW, Torre AFDL, Schmeda-Hirschmann G, Vega C, Rolon M, Coronel C, et al. Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids. Bioorg Chem. 2020;103:104122–27. https://doi.org/10.1016/j.bioorg.2020.104122.

    Article  CAS  PubMed  Google Scholar 

  26. Huisgen R, Szeimies G, Mobius L. 1.3-Dipolar Cycloadditionen,XXXII. Kinetik der Additionen organischer Azide an CCMehrfachbindungen. Chem Ber. 1967;100:2494–07. https://doi.org/10.1002/cber.19671000806.

    Article  CAS  Google Scholar 

  27. Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67:3057–64. https://doi.org/10.1021/jo011148j.

    Article  CAS  PubMed  Google Scholar 

  28. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azide and terminal alkynes. Angew Chem Int Ed.2002;41:2596–99. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  29. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21. https://doi.org/10.1002/1521-3773.

    Article  CAS  Google Scholar 

  30. Su X, Shuai Y, Guo Z, Feng Y. Functionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly (N-isopropylacrylamide) via click reactions. Molecules. 2013;18:4599–12. https://doi.org/10.3390/molecules18044599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimersynthesis. Molecules. 2015;20:9263. https://doi.org/10.3390/molecules20059263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palomo JM. Click reactions in protein chemistry: from the preparation of semisynthetic enzymes to new click enzymes. Org Biomol Chem. 2012;10:9309–18. https://doi.org/10.1039/C2OB26409A.

    Article  CAS  PubMed  Google Scholar 

  33. Perez-Balderas F, Ortega-Munoz M, Morales-Sanfrutos J, Hernandez-Mateo F, Calvo-Flores FG, Calvo-Asín JA, et al. Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts. Org Lett. 2003;5:1951–54. https://doi.org/10.1021/ol034534r.

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Aneja R, Chaiken I. Click chemistry in peptide-based drug design. Molecules. 2013;18:9797–17. https://doi.org/10.3390/molecules18089797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gallardo H, Ely F, Bortoluzzi AJ, Conte G. Applying click chemistry to synthesis of chiral [1,2,3]-triazole liquid crystals. Liq Cryst. 2005;32:667–71.

    Article  CAS  Google Scholar 

  36. Monk JP, Brogden RN. Naftifine: a review of its antimicrobial activity and therapeutic use in superficial dermatomycoses. Drugs. 1991;42:659–72. https://doi.org/10.2165/00003495-199142040-00008.

    Article  CAS  PubMed  Google Scholar 

  37. Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84:613–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coukell AJ, Markham A. Clopidogrel. Drugs. 1997;54:745–50.

    Article  CAS  PubMed  Google Scholar 

  39. O’Donoghue M, Tharp MD. Antihistamines and their role as antipruritics. Dermatol ther. 2005;18:333–40. https://doi.org/10.1111/j.1529-8019.2005.00034.x.

    Article  PubMed  Google Scholar 

  40. Simplício AL, Clancy JM, Gilmer JF. Prodrugs for amines. Molecules. 2008;13:519–47.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lavis LD. Ester bonds in prodrugs. ACS Chem Biol. 2008;3:203–06. https://doi.org/10.1021/cb800065s.

    Article  CAS  PubMed  Google Scholar 

  42. Kaushik CP, Sangwan J. Regioselective synthesis, antibacterial, and antioxidant activities of ester-linked 1,4-disubstituted 1,2,3-triazoles. Monatsh Chem. 2020;151:807–19. https://doi.org/10.1007/s00706-020-02604-7.

    Article  CAS  Google Scholar 

  43. Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic routes for 1, 4-disubstituted 1, 2, 3-triazoles: a review. Curr Org Chem. 2019;23:860–900.

    Article  CAS  Google Scholar 

  44. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, et al. ADMET lab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminformatics. 2018;10:29–39. https://doi.org/10.1186/s13321-018-0283-x.

    Article  CAS  Google Scholar 

  45. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17. https://doi.org/10.1016/S0169-409X(96)00423-1.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the University Grant Commission (UGC), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Kaushik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, J., Kaushik, C.P., Kumar, L. et al. Design, synthesis and antimicrobial activities of 1,2,3-triazole hybrids with amine-ester functionality. Med Chem Res 33, 77–88 (2024). https://doi.org/10.1007/s00044-023-03163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03163-2

Keywords

Navigation