Skip to main content
Log in

A guide for the synthesis of key nucleoside scaffolds in drug discovery

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This review aims to provide an overview of the synthetic strategies employed for generating modifications within the sugar backbone of nucleoside analogs. We have focused our discussions on the more popular scaffolds seen in medicinal chemistry including modifications to ribose-based nucleosides and 4ʹ-thionucleosides. Importantly, the syntheses of emerging nucleoside chemotypes from recent patent literature are also discussed. We believe a detailed review centered in this critical area of research may help identify unsolved synthetic challenges and inspire the development of new methods for expanding the accessible chemical space in nucleoside-based drug discovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Giuliani AL, Sarti AC, Virgilio FD. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett. 2019;205:16–24.

    Article  CAS  PubMed  Google Scholar 

  2. Dou L, Chen YF, Cowan PJ, Chen XP. Extracellular ATP signaling and clinical relevance. Clin Immunol. 2018;188:67–73.

    Article  CAS  PubMed  Google Scholar 

  3. Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharm. 2021;187:114322.

    Article  CAS  PubMed  Google Scholar 

  4. Schaechter M. Nucleotide metabolism. Encyclopedia of Microbiology. 3rd ed. Oxford: Academic Press; 2009. p. 296–307.

  5. Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, et al. ATP synthesis and storage. Purinergic Signal. 2012;3:343–57.

    Article  Google Scholar 

  6. Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AM, et al. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal. 2012;8:523–37.

    Article  CAS  PubMed  Google Scholar 

  7. Mei L, Du W, Gao W, Mei QB. Purinergic signaling: a novel mechanism in immune surveillance. Acta Pharm Sin. 2010;31:1149–53.

    Article  CAS  Google Scholar 

  8. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98:1591–625.

    Article  CAS  PubMed  Google Scholar 

  9. Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antivir Res. 2018;154:66–86.

    Article  CAS  PubMed  Google Scholar 

  10. Geraghty RJ, Aliota MT, Bonnac LF. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses. 2021;13:667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franciosi MLM, Lima MDM, Schetinger MRC, Cardoso AM. Possible role of purinergic signaling in COVID-19. Mol Cell Biochem. 2021;476:2891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. el Kouni MH. Trends in the design of nucleoside analogues as anti-HIV drugs. Curr Pharm Des. 2002;8:581–93.

    Article  CAS  PubMed  Google Scholar 

  13. Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J Med Chem. 2019;62:8365–91.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida Y, Honma M, Kimura Y, Abe H. Structure, synthesis and inhibition mechanism of nucleoside analogues as HIV-1 reverse transcriptase inhibitors (NRTIs). ChemMedChem. 2021;16:743–66.

    Article  CAS  PubMed  Google Scholar 

  15. Zenchenko AA, Drenichev MS, Il’icheva IA, et al. Antiviral and antimicrobial nucleoside derivatives: structural features and mechanisms of action. Mol Biol. 2021;55:786–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ball BJ, Koller PB, Pullarkat V. Venetoclax in combination with nucleoside analogs in acute myelogenous leukemia. Curr Opin Oncol. 2022;34:531–9.

    Article  CAS  PubMed  Google Scholar 

  17. Seley-Radtke K. Discovery, design, synthesis, and application of nucleoside/nucleotides. Molecules. 2020;25:1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomson JM, Lamont IL. Nucleoside analogues as antibacterial agents. Front Microbiol. 2019;10:952.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Galmarini CM, Popowycz F, Joseph B. Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr Med Chem. 2008;15:1072–82.

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Maag H, Alfredson T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J Pharm Sci. 2008;97:1109–34.

    Article  CAS  PubMed  Google Scholar 

  21. Klapars A, Chung JYL, Limanto J, Calabria R, Campeau LC, Campos KR, et al. Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods. Chem Sci. 2021;12:9031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J Proteome Res. 2020;19:4690–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grundeis F, Ansems K, Dahms K, Thieme V, Metzendorf MI, Skoetz N, et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev. 2023;1:CD014962.

    PubMed  Google Scholar 

  24. Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Trifluridine: a review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs. 1982;23:329–53.

    Article  CAS  PubMed  Google Scholar 

  25. Fostea RM, Arkenau HT. Trifluridine/tipiracil in the treatment of gastric cancer. Future Oncol. 2022;18:1511–7.

    Article  CAS  PubMed  Google Scholar 

  26. Burness CB, Duggan ST. Trifluridine/Tipiracil: a review in metastatic colorectal cancer. Drugs. 2016;76:1393–402.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada K, Wahba AS, Bernatchez JA, Ilina T, Martínez-Montero S, Habibian M, et al. ACS Chem Biol. 2015;10:2024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama M, Momotake A. Synthesis and biological activity of azanucleosides. Synthesis. 1999;9:1541–54.

    Article  Google Scholar 

  29. De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J. 2019;14:3962–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Julander JG, Demarest JF, Taylor R, Gowen BB, Walling DM, Mathis A, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antivir Res. 2021;195:105180.

    Article  CAS  PubMed  Google Scholar 

  31. Yates MK, Seley-Radtke KL. The evolution of antiviral nucleoside analogues: a review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antivir Res. 2019;2:5–21.

    Article  Google Scholar 

  32. Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleoside, nucleotides, and base analogs. Chem Rev. 2016;116:14379–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kulikowski T. Structure-activity relationships and conformational features of antiherpetic pyrimidine and purine nucleoside analogues. A review. Pharm World Sci. 1994;16:127–38.

    Article  CAS  PubMed  Google Scholar 

  34. Beránek J. A study on structure-activity relationships of nucleoside analogues. Drugs Exp Clin Res. 1986;12:355–67.

    PubMed  Google Scholar 

  35. Zhang Y, Geng H, Zhang J, He K. An update mini-review on the progress of azanucleoside analogues. Chem Pharm Bull (Tokyo). 2022;70:469–76.

    Article  CAS  PubMed  Google Scholar 

  36. Mirza AZ. Advancement in the development of heterocyclic nucleosides for the treatment of cancer—a review. Nucleosides Nucleotides Nucleic Acids. 2019;38:836–57.

    Article  CAS  PubMed  Google Scholar 

  37. Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today. 2021;26:1490–1500.

    Article  CAS  PubMed  Google Scholar 

  38. McKenzie LK, El-Koury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev. 2021;50:5126–64.

    Article  CAS  PubMed  Google Scholar 

  39. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, et al. Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9:2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Giesen KJD, Thompson MJ, Meng Q, Lovelock SL. Biocatalytic synthesis of antiviral nucleosides, cyclic dinucleotides, and oligonucleotide therapies. JACS Au. 2023;3:13–24.

    Article  PubMed  Google Scholar 

  41. Hagedorn PH, Persson R, Funder ED, Alæk N, Diemer SL, Hansen DJ, et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov Today. 2018;23:101–14.

    Article  CAS  PubMed  Google Scholar 

  42. Yu L, Zhou W, She Y, Ma H, Cai Y-S, Jiang M, et al. Efficient biosynthesis of nucleoside cytokinin angustmycin A containing an unusual sugar system. Nat Commun. 2021;12:6633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shiraishi T, Xia J, Kato T, Kuzuyama T. Biosynthesis of the nucleoside antibiotic angustmycins: identification and characterization of the biosynthetic gene cluster reveal unprecedented dehydratase required for exo-glycal formation. J Antibiot. 2021;74:830–3.

    Article  CAS  Google Scholar 

  44. Painter GR, Perryman D, Bluemling GR. 4ʹ-Halogen containing nucleotide and nucleoside therapeutic compositions and uses related thereto 2022; patent WO 2022/174194.

  45. Vargas DF, Larghi EL, Kaufman TS. Evolution of the synthesis of Remdesivir. classical approaches and most recent advances. ACS Omega. 2021;6:19356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Damont A, Dukhan D, Gosselin G, Peyronnet J. Synthesis of 1ʹ-C-Fluoromethyladenosine. Nucleosides Nucleotides Nucleic Acids. 2007;26:1431–4.

    Article  CAS  PubMed  Google Scholar 

  47. Damont A, Dukhan D, Gosselin G, Peyronnet J, Storer R. Synthesis of 1ʹ-C-Fluoromethyladenosine. Nucleosides Nucleotides Nucleic Acids. 2007;26:1431–4.

    Article  CAS  PubMed  Google Scholar 

  48. Himmelstoß M, Erharter K, Renard E, Ennifar E, Kreutz C, Micura R. 2ʹ-0 -O-Trifluoromethylated RNA—a powerful modification for RNA chemistry and NMR spectroscopy. Chem Sci. 2020;11:11322.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Serebryany V, Beigelman L. Synthesis of 2ʹ-O-Substituted Ribonucleosides. Nucleosides Nucleotides Nucleic Acids. 2003;22:5–8.

    Article  Google Scholar 

  50. Barth R, Rose CA, Schӧne O. Synthetic routes to sofosbuvir. synthesis of heterocycles in contemporary medicinal chemistry. Top Heterocycl Chem. 2015;44:51–88.

    Article  Google Scholar 

  51. Szlenkier M, Kamel K, Boryski J. Regioselective mitsunobu reaction of partially protected uridine. Nucleosides Nucleotides Nucleic Acids. 2016;35:410–25.

    Article  CAS  PubMed  Google Scholar 

  52. Chung JYL, Kassim AM, Simmons B, Davis TA, Song ZJ, Limanto J, et al. Kilogram-Scale Synthesis of 2' C Methyl-arabino-Uridine from Uridine via Dynamic Selective Dipivaloylation. Org Process Res Dev. 2022;26:698–709.

    Article  CAS  Google Scholar 

  53. Peifer M, Berger R, Shurtleff VW, Conrad JC, MacMillan DWC. A general and enantioselective approach to pentoses: a rapid synthesis of PSI-6130, the nucleoside core of sofosbuvir. J Am Chem Soc. 2014;136:5900–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meanwell M, Silverman SM, Lehmann J, Adluri B, Wang Y, Cohen R, et al. A short de novo synthesis of nucleoside analogs. Science. 2020;369:725–30.

    Article  CAS  PubMed  Google Scholar 

  55. Balaopala MI, Ollapally AP, Lee HJ. An improved synthesis of azidothymidine. Nucleosides Nucleotides Nucleic Acids. 1996;15:899–906.

    Article  Google Scholar 

  56. Herdewijn PAM. Anchimeric assistance of a 5ʹ-O-Carbonyl function for inversion of configuration at the 3ʹ-Carbon Atom of 2ʹ-Deoxyadenosine. Synthesis of 3ʹ-Azido-2ʹ,3ʹ-dideoxyadenosine and 3ʹ-Azido-2ʹ,3ʹ-dideoxyinosine. J Org Chem. 1988;53:5050–3.

    Article  CAS  Google Scholar 

  57. Herdewijn P, Balzarini J, De Clercq E, Pauwels R, Baba M, Broder S, et al. 3ʹ-Substituted 2ʹ,3ʹ-Dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) Agents. J Med Chem. 1987;30:1270–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nomura M, Sato T, Washinosu M, Shuto S, Matsuda A. Nucleosides and nucleotides. Parts 212: Practical large-scale synthesis of a 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (ECyd), a potent antitumor nucleoside. Isobutyryloxy group as an efficient anomeric leaving group in the Vorbrüggen glycosylation reaction. Tetrahedron. 2001;58:1279–88.

    Article  Google Scholar 

  59. Li J, Chen L, Billedeau RJ, Stanton TF, Chiang JTP, Lee CC, et al. Discovery of a series of potent, selective, and orally bioavailable nucleoside inhibitors of CD73 that demonstrates in vivo antitumor activity. J Med Chem. 2023;66:345–70.

    Article  CAS  PubMed  Google Scholar 

  60. Botta O, Moyroud E, Lobato C, Strazewski P. Synthesis of 3ʹ-azido- and 3ʹ-amino-3ʹ-deoxyadenosine in both entantiomeric forms. Tetrahedron. 1998;54:13529–46.

    Article  CAS  Google Scholar 

  61. Nguyen VH, Tichý M, Rožánková S, Pohl R, Downey M, Doleželová E, et al. Synthesis and anti-trypanosomal activity of 3ʹ-fluororibonucleosides derived from 7-deazapurine nucleosides. Bio. Org Chem Lett. 2021;40:127957.

    CAS  Google Scholar 

  62. Waga T, Nishizaki T, Miyakawa I, Ohrui H, Meguro H. Synthesis if 4ʹ-C-Methylnucleosides. Biosci Biotech Biochem. 1993;57:1433–8.

    Article  CAS  Google Scholar 

  63. Gunic E, Girardet J-L, Pietrzkowshi Z, Esler C, Wang G. Synthessi and cytotoxicity of 4ʹ-C- and 5ʹ-C-substituted toyocamycins. Bioorg Med Chem. 2001;9:163–70.

    Article  CAS  PubMed  Google Scholar 

  64. Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, et al. Design, synthesis, and antiviral properties of 4ʹ-substituted ribonucleosides as inhibitors of hepatitis C virus replication: the discovery of R1479. Bioorg Med Chem. 2007;17:2570–6.

    Article  CAS  Google Scholar 

  65. Ohrui H, Kohgo S, Kitano K, Sakata S, Kodama E, Yoshimura K, et al. Syntheses of 4ʹ-C-Ethynyl-β-D-arabino- and 4ʹ-C-Ethynyl-2ʹ-deoxy-β-D-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J Med Chem 2000;43:4516–25.

    Article  CAS  PubMed  Google Scholar 

  66. Schinazi RF, Amblard F, Gavegnano C, Cox B, Mengshetti S. Combined modalities for nucleosides and/or NADPH Oxidase (NOX) inhibitors as myeloid-specific antiviral agents. WO/2019/133712.

  67. Dukhan D, Dousson CB, Moussa AM, Mayes BA, Stewart AJ. 4ʹ-OR Nucleosides for the treatment of HCV. WO 2015/095419 A1.

  68. Painter GR, Perryman D, Bluemling GR. 4ʹ-halogen containing nucleotide and nucleoside therapeutic compositions and uses related thereto. WO 2019/173602 A1.

  69. Fukuyama K, Ohrui H, Kuwahara S. Synthesis of EFdA via a diastereoselective aldol reaction of a protected 3-Keto Furanose. Org Lett. 2015;17:828–31.

    Article  CAS  PubMed  Google Scholar 

  70. Huffman MA, Fryszkowska A, Alvizo O, Borra-Graske M, Campos KR, Canada KA, et al. Design of an in vitro biocatalytic cascade for the manufacture of Islatravir. Science. 2019;366;1255–9.

  71. Cho A, Kim CU, Kirschberg TA, Mish MR, Squires N. 1ʹ-Substituted pyrimidine N-nucleoside analogs for antiviral treatment. US 2012/0263678 A1.

  72. Beigelman L, Wang G, Smith DB, Prhave M, Jekle CA, Deval J. Substituted nucleosides, nucleotides and analogs thereof. US 2015/0105341 A1.

  73. Mish MR, Cho A, Kirschberg T, Xu J, Zonte S, Fenaux M, et al. Preparation and biological evaluation of 1ʹ-cyano-2ʹ-C-methyl pyrimidine nucleosides as HCV NS5B polymerase inhibitors. Bioorg Med Chem. 2014;24:3092–5.

    Article  CAS  Google Scholar 

  74. Machacek M, Witter D, Gibeau C, Huang C, Kawamura S, Sloman DL, et al. PRMT 5 Inhibitors. WO 2020/033288 A1.

  75. Downey MA, Pohl R, Roithová J, Hocek M. Synthesis of nucleosides through direction glycosylation of nucleobases with 5-O-Monoprotected or 5-modified ribose: improved protocol, scope, and mechanism. Eur J Chem 2017;23:3910–7.

    Article  CAS  Google Scholar 

  76. Painter GR, Perryman D, Bluemling GR. 4ʹ-halogen containing nucleotide and nucleoside therapeutic compositions and uses related thereto. WO 2022/174194.

  77. Beigelman L, Wang G, Smith DB, Prhave M, Jekle CA, Deval J. Substituted nucleosides, nucleotides and analogs thereof. US 2015/0105341 A1.

  78. Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC, Cummins LL, et al. Uniformly modified 2ʹ-Deoxy-2ʹ-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993;36:831–41.

    Article  CAS  PubMed  Google Scholar 

  79. Clarke MO, Mackman RL, Siegal D. Thieno[3,2-D]pyrimidine, Furo[3,2-D]Pyrimidine, and Pyrrolo[3,2-D]Pyrimidines useful for treating respiratory syncitial virus infections. US 2016/0024107 A1.

  80. Fernandez-Bolanos J, Al-Masoudi NAL, Maya I. Sugar derivatives having sulfur in the ring. Adv Carbohydr Chem Biochem. 2001;57:21–98.

    Article  CAS  PubMed  Google Scholar 

  81. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, et al. Improving RNA interference in mammalian cells by 4ʹ-Thio-Modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2ʹ-O-Alkyl Modifications. J Med Chem. 2006;49:1624–34.

    Article  CAS  PubMed  Google Scholar 

  82. Mulamoottil VA, Majik MS, Chandra G, Jeong LS. Advances in synthesis and biological activity of 4ʹ-Thionucleosides. Chem Synth Nucleoside Analog. 2013;655–97.

  83. Yokoyama M. The Properties of 4ʹ-Thionucleosides. Modif Nucleosides. Chapter 8, 2008:173–221.

  84. Chapdelaine D, Cardinal-David B, Prévost M, Gagnon M, Thumin I, Guindon Y. A stereoselective approach to nucleosides and 4′-Thioanalogues from acyclic precursor. J Am Chem Soc. 2009;131:17242–5.

    Article  CAS  PubMed  Google Scholar 

  85. Cardinal-David B, Labbé MO, Prévost M, Dostie S, Guindon Y. Diastereoselective and regioselective synthesis of adenosine thionucleoside analogues using an acyclic approach. Can J Chem 2020;98:466–70.

    Article  CAS  Google Scholar 

  86. Guinan M, Huang N, Hawes CS, Lima MA, Smith M, Miller GJ. Chemical synthesis of 4’-thio and 4’-sulfinyl pyrimidine nucleoside analogues. Org Biomol Chem. 2022;20:1401–6.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshimura Y, Saito Y, Natori Y, Wakamatsu H. Synthesis of 4′-thionucleosides as antitumor and antiviral agents. Chem Pharm Bull. 2018;66:139–46.

    Article  CAS  Google Scholar 

  88. Yoshimura Y, Kitano K, Yamada K, Sakata S, Miura S, Ashida N, et al. Synthesis and biological activities of 2ʹ-Deoxy-4ʹ-fluoro-4ʹthioarabinofuranosylpyrimidine and -Purine Nucleosides. Bioorg Med Chem. 2000;8:1545–58.

    Article  CAS  PubMed  Google Scholar 

  89. Schinazi R, Amblard F, Chen Z, Zandi K. Thionucleosides as Antiviral Agents. WO 2022/217155 A2.

  90. Haraguch K, Takahashi H, Shiina N, Horii C, Yoshimura Y, Nishikawa A, et al. Stereoselective synthesis of the β-anomer of 4ʹ-Thionucleosides based on electrophilic glycosidation of 4-thiofuranoid glycals. J Org Chem. 2022;67:5919–27.

    Article  Google Scholar 

  91. Haraguchi K, Takahashi H, Tanaka H, Hayakawa H, Ashida N, Nitanda T, et al. Synthesis and antiviral activities of 1'-carbon-substituted 4'-thiothymidines. Bioorg Med Chem. 2004;12:5309–16.

    Article  CAS  PubMed  Google Scholar 

  92. Yoshimura Y, Kitano K, Satoh H, Watanabe M, Miura S, Sakata S, et al. A novel synthesis of new antineoplastic 2ʹ-Deoxy-2ʹ-substituted-4ʹ-thiocytidines. J Org Chem. 1996;61:822–3.

    Article  CAS  Google Scholar 

  93. Kaga D, Minakara N, Matsuda A. Nucleosides and nucleotides. 232. Synthesis of 2ʹ-C-Methyl-4ʹ-thiocytidine: Unexpected anomerization of the 2ʹ-Keto-4ʹ-thionucleoside precursor. Nucleosides Nucleotides Nucleic Acids. 2005;24:1789–1800.

    Article  CAS  PubMed  Google Scholar 

  94. Dentmon ZW, Kaiser TM, Liotta DC. Synthesis and antiviral activity of a series of 2’-C-Methyl-4’-thionucleoside monophosphate prodrugs. Molecules. 2020;25:5165–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guinan M, Huang N, Hawes CS, Lima MA, Smith M, Miller GJ. Chemical synthesis of 4’-thio and 4’-sulfinyl pyrimidine nucleoside analogues. Org Biomol Chem. 2022;20:1401–6.

    Article  CAS  PubMed  Google Scholar 

  96. Dostie S, Prévost M, Mochirian P, Tanveer K, Andrella N, Rostami A, et al. Diastereoselective synthesis of C2ʹ-Fluorinated nucleoside analogues using an acyclic approach. J Org Chem. 2016;81:10769–90.

    Article  CAS  PubMed  Google Scholar 

  97. Haraguchi K, Shimada H, Tanaka H, Hamasaki T, Baba M, Gullen EA, et al. Synthesis and anti-HIV activity of 4ʹ-Substituted 4ʹ-Thiothymidines: a new entry based on nucleophilic substituion of the 4ʹ-Acetoxy group. J Med Chem. 2008;51:1885–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Meanwell.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapaksha, D.G., Mondal, S., Wang, J.W. et al. A guide for the synthesis of key nucleoside scaffolds in drug discovery. Med Chem Res 32, 1315–1333 (2023). https://doi.org/10.1007/s00044-023-03096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03096-w

Keywords

Navigation