Skip to main content
Log in

Synthesis and in vitro antimicrobial evaluation of benzothiazolylindenopyrazoles

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the present study, a series of benzothiazolylindenopyrazoles 5a‒o has been efficiently synthesized by refluxing a solution of 2-(3-substitutedbenzoyl)-(1H)-indene-1,3(2H)-diones 1a–c and 2-hydrazinylbenzo[d]thiazole/2-hydrazinyl-6-substitutedbenzo[d]thiazoles 4a–e in presence of dry ethanol and glacial acetic acid in good yields. The newly synthesized derivatives 5a‒o were well characterized by using different physical and spectral techniques (FTIR, 1H NMR, 13C NMR and HRMS). All the derivatives 5a‒o were subjected to their preliminary antimicrobial assay against two Gram-positive bacterial strains [Bacillus subtilis (MTCC 441) and Staphylococcus aureus (MTCC 7443)], two Gram-negative bacterial strains [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)], and two fungal strains [Candida albicans (MTCC 227) and Aspergillus niger (MTCC 8189)] employing serial dilution method using Ciprofloxacin and Fluconazole as standard drugs for bacterial and fungal strains, respectively. Among all the tested derivatives, 5m (MIC = 0.0255 µmol/mL) and 5o (MIC = 0.0232 µmol/mL) exhibited maximal inhibition against fungal strain C. albicans. Overall, the investigation revealed that the titled compounds were found more potent against C. albicans.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4:565–7.

    Article  Google Scholar 

  2. Boucher HW, Talbot GH, Bradley JS. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12.

    Article  Google Scholar 

  3. Manandhar S, Luitel S, Dahal RK. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med. 2019;2019:1–5.

    Article  Google Scholar 

  4. Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial activity of curcumin in nanoformulations: a comprehensive review. Int J Mol Sci. 2021;22:7130–78.

    Article  Google Scholar 

  5. Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev. 2013;113:2958–3043.

    Article  Google Scholar 

  6. Ansari A, Ali A, Asif M. Biologically active pyrazole derivatives. N. J Chem. 2017;41:16–41.

    Article  Google Scholar 

  7. Ju Y, Varma RS. Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides: Microwave-Assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. J Org Chem. 2006;71:135–41.

    Article  Google Scholar 

  8. Zárate-Zárate D, Aguilar R, Hernández-Benitez RI, Labarrios EM, Delgado F, Tamariz J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron. 2015;71:6961–78.

    Article  Google Scholar 

  9. Faisal M, Saeed A, Hussain S, Dar P, Larik FA. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J Chem Sci. 2019;131:1–30.

    Article  Google Scholar 

  10. Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, et al. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules. 2018;23:134–219.

    Article  Google Scholar 

  11. Mor S, Khatri M, Punia R, Sindhu S. Recent Progress in Anticancer Agents Incorporating Pyrazole Scaffold. Mini-Rev Med Chem. 2022;22:115–63.

    Article  Google Scholar 

  12. Mor S, Khatri M, Punia R, Nagoria S, Sindhu S. A new insight into the synthesis and biological activities of pyrazole based derivatives. Mini-Rev Org Chem. 2022;19:717–78.

    Article  Google Scholar 

  13. Bakr FAW, Kamal MD. Synthesis and applications of bipyrazole systems. ARKIVOC. 2012;491:491–545.

    Google Scholar 

  14. Ahsan MJ, Samy JG, Soni S, Jain N, Kumar L, Sharma LK, et al. Discovery of novel antitubercular 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg Med Chem Lett. 2011;21:5259–61.

    Article  Google Scholar 

  15. Ahsan MJ, Samy JG, Khalilullah H, Bakht MA, Hassan MZ. Synthesis and antimycobacterial evaluation of 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide analogues. Eur J Med Chem. 2011;46:5694–7.

    Article  Google Scholar 

  16. Lemke TL, Cramer MB, Shanmugam K. Heterocyclic tricycles as potential CNS agents I: 4-aminoalkylindeno[1,2-c]pyrazoles. J Pharma Sci. 1978;67:1377–81.

    Article  Google Scholar 

  17. Loev B, Mosher WA. Pyrazoloindenone azines. 1961; U.S. Patent No. 2,969,374.

  18. Angelone T, Caruso A, Rochais C, Caputo AM, Cerra MC, Dallemagne P, et al. Indenopyrazole Oxime Ethers: Synthesis and ß1-Adrenergic Blocking Activity. Eur J Med Chem. 2015;92:672–81.

    Article  Google Scholar 

  19. Murineddu G, Lazzari P, Ruiu S, Sanna A, Loriga G, Manca I, et al. Tricyclic Pyrazoles. 4. Synthesis and Biological Evaluation of Analogues of the Robust and Selective CB2 Cannabinoid Ligand 1-(2ˈ,4ˈ-Dichlorophenyl)-6-methyl-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide. J Med Chem. 2006;49:7502–12.

    Article  Google Scholar 

  20. Ahsan MJ, Govindasamy J, Khalilullah H, Mohan G, Stables JP, Pannecouque C, et al. POMA analyses as new efficient bioinformatics’ platform to predict and optimise bioactivity of synthesized 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg Med Chem Lett. 2012;22:7029–35.

    Article  Google Scholar 

  21. Hamilton RW. The antiarrhythmic and antiinflammatory activity of a series of tricyclic pyrazoles. J Heterocycl Chem. 1976;13:545–53.

    Article  Google Scholar 

  22. Shareef MA, Sirisha K, Khan I, Sayeed IB, Jadav SS, Ramu G, et al. synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2-c]pyrazole tethered carbohydrazide hybrids: exploring their in silico ADMET, ergosterol inhibition and ROS inducing potential. Med Chem Comm. 2019;10:806–13.

    Article  Google Scholar 

  23. Mor S, Khatri M. Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl)thiazol-2-yl)indeno[1,2-c]pyrazol-4(1H)-ones. J Mol Struct. 2022;1249:131526–35.

    Article  Google Scholar 

  24. Minegishi H, Futamura Y, Fukashiro S, Muroi M, Kawatani M, Osada H, et al. Methyl 3-((6-methoxy-1,4-dihydroindeno [1,2-c]pyrazol-3-yl) amino)benzoate (GN39482) as a tubulin polymerization inhibitor identified by MorphoBase and ChemProteoBase profiling methods. J Med Chem. 2015;58:4230–41.

    Article  Google Scholar 

  25. Shahlaei M, Fassihi A, Saghaie L, Arkan E, Madadkar-Sobhani A, Pourhossein A. Computational evaluation of some indenopyrazole derivatives as anticancer compounds; application of QSAR and docking methodologies. J Enz Inhib Med Chem. 2013;28:16–32.

    Article  Google Scholar 

  26. Liu YN, Wang JJ, Ji YT, Zhao GD, Tang LQ, Zhang CM, et al. Design, synthesis, and biological evaluation of 1-methyl-1, 4-dihydroindeno[1,2-c]pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J Med Chem. 2016;59:5341–55.

    Article  Google Scholar 

  27. Khan I, Shareef MA, Kumar GC. An overview on the synthetic and medicinal perspectives of indenopyrazoles. Eur J Med Chem. 2019;178:1–12.

    Article  Google Scholar 

  28. Pathak N, Rathi E, Kumar N, Kini SG, Rao CM. A review on anticancer potentials of benzothiazole derivatives. Mini-Rev Med Chem. 2020;20:12–23.

    Article  Google Scholar 

  29. Tariq S, Kamboj P, Amir M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch der Pharmazie. 2019;352:1800170–86.

    Google Scholar 

  30. Keri RS, Patil MR, Patil SA, Budagumpi SA. Comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem. 2015;89:207–51.

    Article  Google Scholar 

  31. Gunawardana GP, Kohmoto S, Gunasekera SP, McConnell OJ, Koehn FE. Dercitine, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus sp. J Am Chem Soc. 1988;110:4856–8.

    Article  Google Scholar 

  32. Mor S, Sindhu S. Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno[1,2-c]pyrazol-4(1H)-ones. Med Chem Res. 2020;29:46–62.

    Article  Google Scholar 

  33. Kilgore LB, Ford JH, Wolfe WC. Insecticidal properties of 1,3-indandiones. Ind Eng Chem. 1942;34:494–7.

    Article  Google Scholar 

  34. Dhawan SN, Mor S, Sharma K, Chawla AD, Saini A, Gupta SC. On the mechanism of formation of pyrazoles from 1,3-diketones and hydrazines: isolation of hydroxypyrazoline intermediates. Indian J Chem Sect B. 1994;33:38–42.

    Google Scholar 

  35. Gupta SC, Quarishi MA, Dhawan SN. Synthesis of 6-phenyl-7H-indeno[2,1-c]quinoline and 2-methyl-6-phenyl-7H-indeno[2,1-c]quinoline. Indian J Chem Sect B. 1979;18:547–8.

    Google Scholar 

  36. Hugerschoff H. Effect of bromine on aromatic thioureas. Chem Ber. 1903;36:3121–34.

    Google Scholar 

  37. Mor S, Mohil R, Nagoria S, Kumar A, Lal K, Kumar D, et al. Regioselective synthesis, antimicrobial evaluation and QSAR studies of some 3‐aryl‐1‐heteroarylindeno[1,2‐c]pyrazol‐4(1H)‐ones. J Heterocycl Chem. 2017;54:1327–41.

    Article  Google Scholar 

  38. Mor S, Nagoria S. Efficient and convenient synthesis, characterization, and antimicrobial evaluation of some new tetracyclic 1,4-benzothiazines. Synth Commun. 2016;46:169–78.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the University Grants Commission, New Delhi, India [Sr.No. 2061610093 Ref.No.19/06/2016(i)EU-V, dated 26-12-2016] and Council of Scientific & Industrial Research, New Delhi [CSIR no. 09/752(0104)/2019-EMR-I] for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satbir Mor.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mor, S., Khatri, M., Punia, R. et al. Synthesis and in vitro antimicrobial evaluation of benzothiazolylindenopyrazoles. Med Chem Res 32, 47–56 (2023). https://doi.org/10.1007/s00044-022-02988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02988-7

Keywords

Navigation