Skip to main content

Advertisement

Log in

Design, synthesis, and biological evaluation of 2, 4-dichlorophenoxyacetamide chalcone hybrids as potential c-Met kinase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

c-Met is involved in cellular processes that lead to the development and progression of cancer. A series of 2, 4-dichlorophenoxyacetamide-chalcones were synthesized and evaluated for their antiproliferative activities against MCF-7, HT-29, and A549 cancer cell lines. Several compounds showed moderate-to-good antiproliferative activity against MCF-7 and A549 cell lines. Many compounds were inactive against the HT-29 cell line. Some selected compounds were tested against c-Met kinase using the ADP GloTM assay and were found to possess IC50 < 10 µM indicating good activity. Compound 6f was identified as a promising compound and evaluated further for its antiproliferative and antimigratory properties on MCF-7 and A549 cell lines using colony formation and wound healing assays, respectively. Compound 6f had long-term antiproliferative effects and exerted antimigratory activity on both cell lines. Compound 6f had better potential at inhibiting growth and migration in MCF-7 cells. Molecular docking studies indicated that these compounds bind to Met1160 from the hinge region. Furthermore, molecular dynamics simulation studies for compound 6f confirmed this finding. Docking-based selectivity studies showed that these compounds were more selective for c-Met kinase.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Granito A, Guidetti E, Gramantieri L. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma. J Hepatocell Carcinoma. 2015;2:29–38. https://doi.org/10.2147/JHC.S77038

    Article  Google Scholar 

  2. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94. https://doi.org/10.1007/s10555-007-9107-6

    Article  Google Scholar 

  3. Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4:444–7. https://doi.org/10.1097/JTO.0b013e31819d6f91

    Article  Google Scholar 

  4. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45 https://doi.org/10.1186/s12943-018-0796-y

    Article  Google Scholar 

  5. Ghiso E, Giordano S. Targeting MET: why, where and how. Curr Opin Pharm. 2013;13:511–8. https://doi.org/10.1016/j.coph.2013.05.018

    Article  Google Scholar 

  6. Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene. 2021;40:4625–51. https://doi.org/10.1038/s41388-021-01863-w

    Article  Google Scholar 

  7. Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem. 2018;143:1103–38. https://doi.org/10.1016/j.ejmech.2017.08.044

    Article  Google Scholar 

  8. Ko B, He T, Gadgeel S, Halmos B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann Transl Med. 2017;5:4. https://doi.org/10.21037/atm.2016.12.09

    Article  Google Scholar 

  9. Botting GM, Rastogi I, Chhabra G, Nlend M, Puri N. Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer. PLoS One. 2015;10:e0136155. https://doi.org/10.1371/journal.pone.0136155

    Article  Google Scholar 

  10. Constantinescu T, Lungu CL. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci. 2021;22:11306 https://doi.org/10.3390/ijms222111306

    Article  Google Scholar 

  11. Oh HN, Lee MH, Kim E, Yoon G, Chae JI, Shim JH. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine. 2019;63:153014. https://doi.org/10.1016/j.phymed.2019.153014

    Article  Google Scholar 

  12. Jung SK, Lee MH, Lim DY, Lee SY, Jeong CH, Kim JE, Lim TG, Chen H, Bode AM, Lee HJ, Lee KW, Dong Z. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth. Mol Carcinog. 2015;54:322–31. https://doi.org/10.1002/mc.22191

    Article  Google Scholar 

  13. Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. Phytomedicine. 2019;55:125–36. https://doi.org/10.1016/j.phymed.2018.07.001

    Article  Google Scholar 

  14. Oh HN, Lee MH, Kim E, Kwak AW, Yoon G, Cho SS, Liu K, Chae JI, Shim JH. Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules. 2020;10:297. https://doi.org/10.3390/biom10020297

    Article  Google Scholar 

  15. Purnama A, Mardina V, Puspita K, et al. Molecular docking of two cytotoxic compounds from Calotropis gigantea leaves against therapeutic molecular target of pancreatic cancer. Narra J. 2021;1. https://doi.org/10.52225/narraj.v1i2.37

  16. Begum S, Bharathi K, Prasad KVSRG. Mini review on therapeutic profile of phenoxy acids and thier derivatives. Int J Pharm Pharm Sci. 2016;8:66–71. https://doi.org/10.22159/ijpps.2016v8i10.5005

    Article  Google Scholar 

  17. Rani P, Pal D, Hegde RR, Hashim SR. Leuckart synthesis and pharmacological assessment of novel acetamide derivatives. Anticancer Agents Med Chem. 2016;16:898–906. https://doi.org/10.2174/1871520616666151111115327

    Article  Google Scholar 

  18. Patil V, Tilekar K, Mehendale-Munj S, Mohan R, Ramaa CS. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem. 2010;45:4539–44. https://doi.org/10.1016/j.ejmech.2010.07.014

    Article  Google Scholar 

  19. Bhanushali U, Rajendran S, Sarma K, Kulkarni P, Chatti K, Chatterjee S, Ramaa CS. 5-Benzylidene-2,4-thiazolidenedione derivatives: design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg Chem. 2016;67:139–47. https://doi.org/10.1016/j.bioorg.2016.06.006

    Article  Google Scholar 

  20. Prabhakar BT, Khanum SA, Shashikanth S, Salimath BP. Antiangiogenic effect of 2-benzoyl-phenoxy acetamide in EAT cell is mediated by HIF-1 alpha and down regulation of VEGF of in-vivo. Investig N Drugs. 2006;24:471–78. https://doi.org/10.1007/s10637-006-6587-0

    Article  Google Scholar 

  21. Wang C, Gao H, Dong J, Wang F, Li P, Zhang J. Insight into the medicinal chemistry of EGFR and HER-2 inhibitors. Curr Med Chem. 2014;21:1336–50. https://doi.org/10.2174/0929867320666131119124646

    Article  Google Scholar 

  22. Lee K, Roh SH, Xia Y, Kang KW. Synthesis and biological evaluation of phenoxy-N-phenylacetamide derivatives as novel P-glycoprotein inhibitors. Bull Korean Chem Soc. 2011;32:3666–74. https://doi.org/10.5012/bkcs.2011.32.10.3666

    Article  Google Scholar 

  23. Jung SK, Lee MH, Lim DY, Lee SY, Jeong CH, Kim JE, Lim TG, Chen H, Bode AM, Lee HJ, Lee KW. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib‐resistant lung cancer growth. Mol Carcinog. 2015;54:322–31. https://doi.org/10.1002/mc.22191

    Article  Google Scholar 

  24. Joshi A, Bhojwani H, Wagal O, Begwani K, Joshi U, Sathaye S, Kanchan D. Evaluation of benzamide-chalcone derivatives as EGFR/CDK2 inhibitor: synthesis, in-vitro inhibition, and molecular modeling studies. Anticancer Agents Med Chem. 2022;22:328–43. https://doi.org/10.2174/1871520621666210415091359

    Article  Google Scholar 

  25. Karthikeyan C, Narayana Moorthy NSH, Ramasamy S, Vanam U, Manivannan E, Karunagaran D, Trivedi P. Advances in chalcones with anticancer activities. Recent Pat Anticancer Drug Discov 2014;10:97–115

    Article  Google Scholar 

  26. Silverstein RM, Webster FX. Spectrometric identification of organic compounds, 6th ed. 2006

  27. Parr C, Jiang WG. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol. 2001;19:857–63. https://doi.org/10.3892/ijo.19.4.857

    Article  Google Scholar 

  28. Wang J, Anderson MG, Oleksijew A, Vaidya KS, Boghaert ER, Tucker L, Zhang Q, Han EK, Palma JP, Naumovski L, Reilly EB. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23:992–1000. https://doi.org/10.1158/1078-0432.CCR-16-1568

    Article  Google Scholar 

  29. Kammula US, Kuntz EJ, Francone TD, Zeng Z, Shia J, Landmann RG, Paty PB, Weiser MR. Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett. 2007;248:219–28. https://doi.org/10.1016/j.canlet.2006.07.007

    Article  Google Scholar 

  30. Liu Y, Shi QF, Qi M, Tashiro S, Onodera S, Ikejima T. Interruption of hepatocyte growth factor signaling augmented oridonin-induced death in human non-small cell lung cancer A549 cells via c-met-nuclear factor-κB-cyclooxygenase-2 and c-Met-Bcl-2-caspase-3 pathways. Biol Pharm Bull. 2012;35:1150–58. https://doi.org/10.1248/bpb.b12-00197

    Article  Google Scholar 

  31. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, Richards W, Sugarbaker D, Husain AN, Christensen JG, Salgia R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–88. https://doi.org/10.1158/0008-5472.CAN-04-2650

    Article  Google Scholar 

  32. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer RT, Day ML. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol. 1995;147:386–96.

    Google Scholar 

  33. Wu JF, Liu MM, Huang SX, Wang Y. Design and synthesis of novel substituted naphthyridines as potential c-Met kinase inhibitors based on MK-2461. Bioorg Med Chem Lett. 2015;25:3251–55. https://doi.org/10.1016/j.bmcl.2015.05.082

    Article  Google Scholar 

  34. Yang Y, Zhang Y, Yang L, Zhao L, Si L, Zhang H, Liu Q, Zhou J. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity. Bioorg Chem. 2017;70:126–32. https://doi.org/10.1016/j.bioorg.2016.12.002

    Article  Google Scholar 

  35. Zhai X, Bao G, Wang L, Cheng M, Zhao M, Zhao S, Zhou H, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors. Bioorg Med Chem. 2016;24:1331–45. https://doi.org/10.1016/j.bmc.2016.02.003

    Article  Google Scholar 

  36. Liu J, Yang D, Yang X, Nie M, Wu G, Wang Z, Li W, Liu Y, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydroquinoxaline moiety as c-Met kinase inhibitors. Bioorg Med Chem. 2017;25:4475–86. https://doi.org/10.1016/j.bmc.2017.06.037

    Article  Google Scholar 

  37. Wang LX, Liu X, Xu S, Tang Q, Duan Y, Xiao Z, Zhi J, Jiang L, Zheng P, Zhu W. Discovery of novel pyrrolo-pyridine/pyrimidine derivatives bearing pyridazinone moiety as c-Met kinase inhibitors. Eur J Med Chem. 2017;141:538–51. https://doi.org/10.1016/j.ejmech.2017.10.027

    Article  Google Scholar 

  38. Yuan H, Liu Q, Zhang L, Hu S, Chen T, Li H, Chen Y, Xu Y, Lu T. Discovery, optimization and biological evaluation for novel c-Met kinase inhibitors. Eur J Med Chem. 2018;143:491–502. https://doi.org/10.1016/j.ejmech.2017.11.073

    Article  Google Scholar 

  39. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharm. 2013;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  Google Scholar 

  40. Joshi A, Bhojwani H, Joshi U, et al. Cinnamamide‑chalcone derivatives as CDK2 inhibitors: synthesis, pharmacological evaluation, and molecular modelling study. J Iran Chem Soc. 2022. https://doi.org/10.1007/s13738-022-02610-y

  41. Xiong H, Zhang J, Zhang Q, Duan Y, Zhang H, Zheng P, Tang Q. Design, synthesis and biological evaluation of 4-(pyridin-4-yloxy) benzamide derivatives bearing a 5-methylpyridazin-3(2H)-one fragment. Bioorg Med Chem Lett. 2020;30:127076 https://doi.org/10.1016/j.bmcl.2020.127076

    Article  Google Scholar 

  42. Chen X, Zhang B, Yuan X, Yang F, Liu J, Zhao H, Liu L, Wang Y, Wang Z, Zheng Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid Med Cell Longev. 2012;2012:534934 https://doi.org/10.1155/2012/534934

    Article  Google Scholar 

  43. Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Methods Mol Biol. 2005;294:23–9. https://doi.org/10.1385/1-59259-860-9:023

    Article  Google Scholar 

  44. Younus S, Chandra SSV, Nair SSA. Docking and dynamic simulation study of crizotinib and temozolomide drug with glioblastoma and NSCLC target to identify better efficacy of the drug. Futur J Pharm Sci. 2021;7:187 https://doi.org/10.1186/s43094-021-00323-2

    Article  Google Scholar 

  45. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. PNAS. 2003;100:12654–9. https://doi.org/10.1073/pnas.1734128100

    Article  Google Scholar 

  46. Sarukhanyan E, Shityakov S, Dandekar T. In silico designed Axl receptor blocking drug candidates against Zika virus infection. ACS Omega. 2018;3:5281–90. https://doi.org/10.1021/acsomega.8b00223

    Article  Google Scholar 

  47. Nwizu T, Kanteti R, Kawada I, Rolle C, Vokes EE, Salgia R. Crizotinib (PF02341066) as a ALK/MET inhibitor—special emphasis as a therapeutic drug against lung cancer. Drugs Future. 2011;36:91–9. https://doi.org/10.1358/dof.2011.036.02.1584112

    Article  Google Scholar 

  48. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18:1–22. https://doi.org/10.1186/s12943-019-1090-3

    Article  Google Scholar 

  49. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst S, Lee L, Lesch J, Chou YC, Joly AH. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011;10:2298–308. https://doi.org/10.1158/1535-7163.MCT-11-0264

    Article  Google Scholar 

  50. Damghani T, Sedghamiz T, Sharifi S, Pirhadi S. Critical c-Met-inhibitor interactions resolved from molecular dynamics simulations of different c-Met complexes. J Mol Str. 2020;1203:127456 https://doi.org/10.1016/j.molstruc.2019.127456

    Article  Google Scholar 

  51. Morgan E. Vogel’s textbook of practical organic chemistry, 5th ed. 1990

  52. Bhagat S, Sharma R, Sawant DM, Sharma L, Chakraborti AK. LiOH·H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1,3-diaryl-2-propenones by Claisen–Schmidt condensation under mild conditions. J Mol Catal A Chem. 2006;244:20–4. https://doi.org/10.1016/j.molcata.2005.08.039

    Article  Google Scholar 

  53. Papazisis KT, Geromichalos GD, Dimitriadis KA, Kortsaris AH. Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods. 1997;208:151–8. https://doi.org/10.1016/s0022-1759(97)00137-3

    Article  Google Scholar 

  54. Voigt W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med. 2005;110:39–48. https://doi.org/10.1385/1-59259-869-2:039

    Article  Google Scholar 

  55. Hsiao BK, Zegzouti H, Ph D, Vidugiriene J, Goueli SA. Corporation P. MET Kinase Assay. 1989

  56. TM313. ADP-Glo TM Kinase Assay. Technical Manual, Promega Corporation.

  57. Corporation P. ADP-Glo Kinase Assay: Instructions for Use of Products V9101, V9102 and V9103. 2011, Revised 3/(TM313), 22

  58. Zegzouti H, Zdanovskaia M, Hsiao K, Goueli SA. ADP-Glo: a bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev Technol. 2009;7:560–72. https://doi.org/10.1089/adt.2009.0222

    Article  Google Scholar 

  59. Wagal OS, Joshi AJ, Joshi UJ, Bhojwani HR, Begwani KV, Dawne HA, Gude RP, Sathaye SS, Kanchan DM. Studies in molecular modeling, in-vitro CDK2 inhibition and antimetastatic activity of some synthetic flavones. Front Biosci (Landmark Ed). 2021;26:664–81. https://doi.org/10.2741/4911

    Article  Google Scholar 

  60. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9. https://doi.org/10.1038/nprot.2006.339

    Article  Google Scholar 

  61. Lee HS, Seo EY, Kang NE, Kim WK. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem. 2008;19:313–9. https://doi.org/10.1016/j.jnutbio.2007.05.008

    Article  Google Scholar 

  62. Pichot CS, Hartig SM, Xia L, Arvanitis C, Monisvais D, Lee FY, Frost JA, Corey SJ. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br J Cancer. 2009;101:38–47. https://doi.org/10.1038/sj.bjc.6605101

    Article  Google Scholar 

  63. Maestro, version 11.1, Schrodinger, LLC, New York, NY, 2017.

  64. Schrödinger Release 2017-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2017; Impact, Schrödinger, LLC, New York, NY, 2017; Prime, Schrödinger, LLC, New York, NY, 2017

  65. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34. https://doi.org/10.1007/s10822-013-9644-8

    Article  Google Scholar 

  66. Schrodinger Release 2017-1: Glide, Schrodinger, LLC, New York, NY, 2017

  67. Schrodinger Release 2017-1: Ligprep, Schrodinger, LLC, New York, NY, 2017

  68. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49. https://doi.org/10.1021/jm0306430

    Article  Google Scholar 

  69. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–96

    Article  Google Scholar 

  70. Desmond molecular dynamics system; D. E. Shaw Research: New York, NY, 2018

  71. Bowers KJ, Chow E, Xu H, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE conference on supercomputing 2006 (pp. 84-es). https://doi.org/10.1109/SC.2006.54

  72. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35. https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  73. Ryckaert JP, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–41. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  Google Scholar 

  74. Lambrakos SG, Boris JP, Oran ES, Chandrasekhar I, Nagumo M. A modified shake algorithm for maintaining rigid bonds in molecular dynamics simulations of large molecules. J Comput Phys. 1989;85:473–86. https://doi.org/10.1016/0021-9991(89)90160-5

    Article  Google Scholar 

  75. Tuckerman MB, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97:1990–2001. https://doi.org/10.1063/1.463137

    Article  Google Scholar 

  76. Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101:4177–89. https://doi.org/10.1063/1.467468

    Article  Google Scholar 

  77. Talele TT, McLaughlin ML. Molecular docking/dynamics studies of Aurora A kinase inhibitors. J Mol Graph Model. 2008;26:1213–22. https://doi.org/10.1016/j.jmgm.2007.11.003

    Article  Google Scholar 

  78. Qureshi SI, Chaudhari HK. Design, synthesis, in-silico studies and biological screening of quinazolinone analogues as potential antibacterial agents against MRSA. Bioorg Med Chem 2019;27:2676–88. https://doi.org/10.1016/j.bmc.2019.05.012

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Indian Council of Medical Research (ICMR) under Senior Research Fellowship (F. No.45/18/201/-BIO/BMS dated 11th April 2018) awarded to Ms. Heena Bhojwani. Dr. Urmila Joshi acknowledges Department of Science and Technology- SERB (SERB/F/7466/2018-2019) and All India Council for Technical Education (F. No. 8-36/RIFD/RPS/Policy-1/2017-18 dated 4th January 2019) for research facilities. Ms. Heena Bhojwani acknowledges the FTIR facility rendered to her under the DST-FIST Grant (Letter SR/FST/College-264 dated 18th November 2015) and Instrumentation Facility at University of Mumbai for NMR. Authors acknowledge Dr. Anindya Goswami, Cancer Pharmacology Division, CSIR-IIIM, Jammu for the assistance in colony formation and wound healing assay. Authors are thankful to Dr. Jyoti Kode, ACTREC, Kharghar for their anticancer drug screening facility. Authors acknowledge Ms. Khushboo Begwani for helping in kinase inhibition assay. Authors are thankful to Cipla Pvt. Ltd. Mumbai for the drug sorafenib provided as gift sample. Authors acknowledge D. E. Shaw Pvt. Ltd. for academic version of Desmond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhojwani, H., Patil, S., Joshi, U. et al. Design, synthesis, and biological evaluation of 2, 4-dichlorophenoxyacetamide chalcone hybrids as potential c-Met kinase inhibitors. Med Chem Res 32, 109–127 (2023). https://doi.org/10.1007/s00044-022-02986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02986-9

Keywords

Navigation