Skip to main content
Log in

An in vitro study of the 5-methyl- and 5-bromo/chloro substituted 2-hydroxy-3-nitrochalcones as α-glucosidase and/or α-amylase inhibitors with potential anti-inflammatory activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Series of the 5-methyl-, 5-bromo- and 5-chloro substituted 2-hydroxy-3-nitrochalcones (2ad), (2eh) and (2il), respectively, have been synthesized and characterized using a combination of spectroscopic and single crystal X-ray diffraction techniques. The compounds were, in turn, evaluated through enzymatic assays in vitro for inhibitory effect against α-glucosidase and α-amylase activities. Most of the test compounds exhibited increased inhibitory activity against α-glucosidase compared to the anti-diabetic drug, acarbose. Chalcones 2a, 2c, 2d, and 2gj exhibited dual inhibitory effect against both enzymes with minimal cytotoxicity against the Raw-264,7 macrophage (Murine) cells compared to the anticancer drug, curcumin. Derivatives 2e and 2k exhibited increased inhibitory activity and selectivity against α-amylase with significantly reduced cytotoxicity against the Raw-264,7 cells. Chalcones 2a, 2i, and 2j showed the capability to increase the phagocytic ability of Raw-264,7 cells in the presence of lipopolysaccharide (LPS) stimuli. Molecular docking has been performed on the most active derivatives to predict the hypothetical protein–ligand binding modes into the α-glucosidase and α-amylase binding sites. Selected compounds were also docked into the Toll-like receptor-myeloid differentiation factor 2 (TLR4-MD2) active sites to determine their binding energies at least at theoretical level. The key aspects of the pharmacokinetics of these compounds, namely, absorption, distribution, metabolism, and excretion have also been simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The CIF file containing complete information on the studied structure of 2k was deposited with the Cambridge Crystallographic Data Center, CCDC 2192594, and is freely available upon request from the following website: www.ccdc.cam.ac.uk/datarequest/cif or by contacting the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB2 1EZ, UK; fax: + 44-1223-336033; email: deposit@ccdc.cam.ac.uk.

References

  1. WHO, World Health Organization. Global Report on Diabetes. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf, 2016 (Accessed 2021).

  2. Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S. et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome- Review of classical and new compounds: Part-I. Pharmaceuticals. 2019;12:152. https://doi.org/10.3390/ph12040152.

    Article  PubMed Central  CAS  Google Scholar 

  3. Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R. et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus, management. Front Endocrinol. 2017;8:1–12. 0.3389/fendo.2017.0000.

    Article  Google Scholar 

  4. Grosick R, Alvarado-Vazquez PA, Messersmith AR, Romero-Sandoval EA. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769–78. https://doi.org/10.2147/JPR.S164493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77–89. https://doi.org/10.1016/j.cca.2016.08.015.

    Article  PubMed  CAS  Google Scholar 

  6. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G-E, Vogiatzi G, Spyridon P. et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol. 2019;14:50–59. https://doi.org/10.15420/ecr.2018.33.1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem. 2017;73:121–7. https://doi.org/10.1016/j.bioorg.2017.06.007.

    Article  PubMed  CAS  Google Scholar 

  8. Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V. et al. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules. 2020;10:61. https://doi.org/10.3390/biom10010061.

    Article  CAS  Google Scholar 

  9. Ghabi A, Brahmi J, Alminderej F, Messaoudi S, Vidald S, Kadrie A. et al. Multifunctional isoxazolidine derivatives as α-amylase and α-glucosidase inhibitors. Bioorg Chem. 2020;98:103713. https://doi.org/10.1016/j.bioorg.2020.103713.

    Article  PubMed  CAS  Google Scholar 

  10. Aispuro-Pérez A, López-Ávalos J, García-Páez F, Montes-Avila J, Picos Corrales LA, Ochoa-Terán A. et al. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors. Bioorg Chem. 2020;94:103491. https://doi.org/10.1016/j.bioorg.2019.103491.

    Article  PubMed  CAS  Google Scholar 

  11. Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem. 2015;103:133–62. https://doi.org/10.1016/j.ejmech.2015.08.043.

    Article  PubMed  CAS  Google Scholar 

  12. Mahapatra DK, Asati V, Bharti SJ. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur J Med Chem. 2015;92:839–65. https://doi.org/10.1016/j.ejmech.2015.01.051.

    Article  PubMed  CAS  Google Scholar 

  13. Alberton AH, Damazio RG, Cazarolli LH, Chiaradia LD, Leal PC, Nunes RJ. et al. Influence of chalcone analogues on serum glucose levels in hyperglycemic rats. Chem Biol Interact. 2008;171:355–62. https://doi.org/10.1016/j.cbi.2007.11.001.

    Article  PubMed  CAS  Google Scholar 

  14. Gómez-Rivera A, Aguilar-Mariscal H, Romero-Ceronio N, Roa-de la Fuente LF, Lobato-García CE. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg Med Chem Lett. 2013;23:5519–522. https://doi.org/10.1002/chin.201409094.

    Article  PubMed  Google Scholar 

  15. Olender J, Zwawiak L, Zaprutko L. Multidirectional efficacy of biologically active nitro compounds included in medicines. Pharmaceuticals. 2018;11:54 https://doi.org/10.3390/ph11020054.

    Article  PubMed Central  CAS  Google Scholar 

  16. Rahman A, Ali MT, Shawan MMAK, Sarwar MG, Khan MAK, Halim MA. Halogen-directed drug design for Alzheimer’s disease: A combined density functional and molecular docking study. SpringerPlus. 2016;5:1346–59. https://doi.org/10.1186/s40064-016-2996-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2012;56:1363–88. https://doi.org/10.1021/jm3012068.

    Article  CAS  Google Scholar 

  18. Kolář M, Hobza P, Bronowska A. Plugging the explicit σ-holes in molecular docking. Chem Comm. 2013;49:981–3. https://doi.org/10.1039/c2cc37584b.

    Article  PubMed  CAS  Google Scholar 

  19. Filarowski A, Kochel A, Hansen PE, Urbanowicz A, Szymborska K. The role of ring substituents on hydrogen bonding of 5-cyano-2-hydroxyacetophenone and 2-hydroxy-4-methoxy-5-nitroacetophenone in the ground and excited states. J Mol Struct. 2007;844–845:77–88. https://doi.org/10.1016/j.molstruc.2007.04.007.

    Article  CAS  Google Scholar 

  20. Macrae CF, Bruno JJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E. et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70. https://doi.org/10.1107/S0021889807067908.

    Article  CAS  Google Scholar 

  21. Rezai T, Bock JA, Zhou MV, Kalyanraman C, Loky R, Jacobson M. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc. 2006;128:14073–80. https://doi.org/10.1021/ja063076p.

    Article  PubMed  CAS  Google Scholar 

  22. Chen H, Yan T, Song Z, Ying S, Wu B, Ju X. et al. MD2 blockade prevents modified LDL-induced retinal injury in diabetes by suppressing NADPH oxidase-4 interaction with Toll-like receptor-4. Exp Mol Med. 2021;53:681–94. https://doi.org/10.1038/s12276-021-00607-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Aksöz BE, Ertan R. Chemical and structural properties of chalcones I. FABAD. J Pharm Sci. 2011;36:223–42.

    Google Scholar 

  24. West-Nielsen M, Dominiak PM, Wozniak K, Hansen PE.Strong intramolecular hydrogen bonding involving nitro- and acetyl groups. Deuterium isotope effects on chemical shifts. J Mol Struct. 2006;78:81–91. https://doi.org/10.1016/j.molstruc.2005.12.03.

    Article  Google Scholar 

  25. Pajak J, Maes G, De Borggraeve WM, Boens N, Filarowski A. Matrix-isolation FT-IR and theoretical investigation of the competitive intramolecular hydrogen bonding in 5-methyl-3-nitro-2-hydroxyacetophenone. J Mol Struct. 2008;880:86–96. https://doi.org/10.1016/j.molstruc.2007.12.019.

    Article  CAS  Google Scholar 

  26. Hansen E, Spanget-Larsen J. NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules. 2017;22:552. https://doi.org/10.3390/molecules22040552.

    Article  PubMed Central  CAS  Google Scholar 

  27. Sobczyk L, Grabowski S, Krygowski TM. Interrelation between H-bond and Pi-electron delocalization. Chem Rev. 2005;105:3513–60. https://doi.org/10.1021/cr030083c.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar R, Karthick T, Tandon P, Agarwal P, Menezes AP, Jayarama A. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques. J Mol Struct. 2018;1164:180–90. https://doi.org/10.1016/j.molstruc.2018.03.06.

    Article  CAS  Google Scholar 

  29. Desiraju GR, Steiner T. In the Weak Hydrogen Bond. International Union of Crystallography. New York: Oxford University Press; 2006. p. 15–16.

    Google Scholar 

  30. Rocha S, Sousa A, Ribeiro D, Correia CM, Silva VLM, Santos CMM. et al. A study towards drug discovery for the management of type 2 diabetes mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food Funct. 2019;10:5510–20. https://doi.org/10.1039/c9fo01298b.

    Article  PubMed  CAS  Google Scholar 

  31. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42. https://doi.org/10.1002/pro.5560040908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rosak C, Mertes G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab Syndr Obes. 2012;5:357–67. https://doi.org/10.2147/DMSO.S28340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem. 2022;235:114282. https://doi.org/10.1016/j.ejmech.2022.114282.

    Article  PubMed  CAS  Google Scholar 

  34. Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med. 1995;18:303–11.

    PubMed  CAS  Google Scholar 

  35. Pili R, Chang J, Partis RA, Mueller RA, Chrest FJ, Passaniti A. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res. 1995;55:2920–6.

    PubMed  CAS  Google Scholar 

  36. Atsumi S, Nosaka C, Ochi Y, Linuma H, Umezawa K. Inhibition of experimental metastasis by an α-glucosidase inhibitor, 1,6-epi-cyclophellitol. Cancer Res. 1993;53:4896–4899.

    PubMed  CAS  Google Scholar 

  37. Gamblin DP, Scanlan EM, Davis BG. Glycoprotein synthesis: An update. Chem Rev. 2009;109:131–163. https://doi.org/10.1002/chin.200919254.

    Article  PubMed  CAS  Google Scholar 

  38. Rawlings AJ, Lomas H, Pilling AW, Lee MJ-R, Alonzi DS, Rountree JSS, et al. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin α-glucosidase inhibitors. ChemBioChem. 2009;10:1101–1105.

    Article  PubMed  CAS  Google Scholar 

  39. Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharm Sci. 2005;26:178–82. https://doi.org/10.1016/j.tips.2005.02.007.

    Article  PubMed  CAS  Google Scholar 

  40. Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20:1033. https://doi.org/10.3390/ijms20051033.

    Article  PubMed Central  CAS  Google Scholar 

  41. Fang H, Ruma A, Pengal RA, Cao X, Ganesan LP, Wewers MD. et al. Lipopolysaccharide-induced macrophage inflammatory response is regulated by SHIP1. J Immunol. 2004;173:360–6. https://doi.org/10.4049/jimmunol.173.1.360.

    Article  PubMed  CAS  Google Scholar 

  42. Bahgat MM, Ibrahim DR. Proinflammatory cytokine polarization in type 2 diabetes. Cent Eur J Immunol. 2020;45:170–5. https://doi.org/10.5114/ceji.2020.97904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S. et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol. 2020;21:32 https://doi.org/10.1186/s12865-020-00355-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mitsuzawa H, Nishitani C, Hyakushima N, Shimizu T, Sano H, Matsushima N. et al. Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. J Immunol. 2006;177:8133–9. https://doi.org/10.4049/jimmunol.177.11.8133.

    Article  PubMed  CAS  Google Scholar 

  45. Park C, HwangBo H, Lee H, Kim, G-Y, Cha H-J, Choi SH, et al., The immunostimulatory effect of indole-6-carboxaldehyde isolated from Sargassum thunbergii (Mertens) Kuntze in RAW 264.7 macrophages. Anim. Cells Syst. 2020. https://doi.org/10.1080/19768354.2020.1808529.

  46. Roig-Zamboni V, Cobucci-Ponzano B, Iacono R, Ferrara MC, Germany S, Bourne Y. et al. Structure of human lysosomal acid α-glucosidase– a guide for the treatment of Pompe disease. Nat Commun. 2017;8:1111. https://doi.org/10.1038/s41467-017-01263-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kandra L, Zajacz A, Remenyik J, Gyemant G. Kinetics investigation of a new inhibitor for human salivary alph-amylase. Biochem Biophyd Res Commun. 2005;334:824–8. https://doi.org/10.1016/J.BBRC.2005.06.165.

    Article  CAS  Google Scholar 

  48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0.

    Article  PubMed  CAS  Google Scholar 

  49. Dighade AS. Synthesis of substituted nitro-chalcones and 3, 5-diaryl-nitro-Δ2-pyrazolines. Int J Chem Sci. 2010;8:851–6.

    CAS  Google Scholar 

  50. Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S. Synthesis, in vitro evaluation and molecular docking of the 5-acetyl-2-aryl-6-hydroxybenzo[b]furans against multiple targets linked to type 2 diabetes. Biomolecules. 2020;10:418. https://doi.org/10.3390/biom10030418.

    Article  PubMed Central  CAS  Google Scholar 

  51. Sileshi G, Wubshet S, Schmidt JS, Wiese S, Staerk D. High-resolution screening combined with HPLC-HRMS-SPE-NMR for identification of potential health-promoting constituents in sea aster and searocket–new Nordic food ingredients. J Agric Food Chem. 2013;61:8616–23.

    Article  Google Scholar 

  52. Morris GM, Huey P, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;40:2785–91.

    Article  Google Scholar 

  53. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank University of the Witwatersrand for X-ray diffraction data using the single-crystal diffractometer purchased through the NRF Equipment Program (UID:78572). HRMS analysis was conducted on Sciex X500R TOF-MS of the University of Limpopo, funded by the South African National Research Foundation (NRF), grant number: 120326.

Funding

This project received financial support from the University of South Africa, University of Limpopo and the National Research Foundation (NRF) in South Africa (NRF GUN’s: 118554 & 138285), South African Medical Research Council (SAMRC) (Division of Research Capacity Development) (SAMRC Project Code Number: 57009 & 57039) as well as Malaysia Ministry of Higher Education Fundamental Research Grant Scheme (203/CIPPM/6711680; FRGS/1/2018/STG05/USM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

M.J.M.: Conceptualization, Formal analysis, Writing–original draft, Methodology, Writing– review & editing; M.M.M.: Conceptualization, Methodology, Investigation, Writing– original draft. Y.S.C.: Formal analysis, Methodology, Writing– review & editing. B.A.M.: Formal analysis, Methodology, Writing– original draft; V.G.M.: Writing– review & editing.

Corresponding author

Correspondence to Malose J. Mphahlele.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mphahlele, M.J., Maluleka, M.M., Choong, Y.S. et al. An in vitro study of the 5-methyl- and 5-bromo/chloro substituted 2-hydroxy-3-nitrochalcones as α-glucosidase and/or α-amylase inhibitors with potential anti-inflammatory activity. Med Chem Res 31, 2243–2259 (2022). https://doi.org/10.1007/s00044-022-02980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02980-1

Keywords

Navigation