Skip to main content

Advertisement

Log in

Cytotoxic and antibacterial activities of compounds isolated from the fruits and stem-bark of Tetrapleura tetraptera (Schumach. & Thonn.) Taub. (Fabaceae)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new glyceride, 2,3-dihydroxypropyl-31-hydroxyhentriacontanoate (1), a new glucoside stigmasterol derivative, stigmasterol 3-O-β-D-glucopyranoside 6’-hexadecanoate (2) along with eleven known compounds (3-13) were isolated from the fruits and the stem bark of Tetrapleura tetraptera (Schumach. & Thonn.) Taub. using silica gel vacuum liquid and column chromatography. The structures of the isolated compounds were elucidated based on spectroscopic and spectrometry methods including NMR (1D and 2D), high-resolution mass spectrometry (HRESIMS) and comparison with data reported in the literature. The crude extract and the isolated compounds were evaluated for their antibacterial activity against a panel of bacterial strains using the microdilution technique and for their cytotoxic potential on breast cancer cell lines (MCF-7, MDA-MB-231) using doxorubicin as reference medicine. All the tested compounds exhibited significant antibacterial activity against Klebsiella aerogenes and Bacillus subtilis with an MIC value of 18.5 µg/mL. Furthermore, compounds (3) and (9) were active against all bacterial strains with MICs values ranging from 18.5 to 74 µg/mL. Compounds (12-13) and the crude extract were cytotoxic against MDA-MB-231 cells with their CC50 values ranging between 14.5 and 20.0 µg/mL. These results confirm that T. tetraptera is a potential source of antibacterial agents and exhibits selective toxicity against breast cancer cell lines. Apart from compound (3) and compounds (10-12), all the other compounds were isolated from Tetrapleura genus for the first time. Compounds (1), (2), (6), (7) and (8) were also isolated from the Fabaceae family for the first time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pitout JDD. Multiresistant Enterobacteriaceae: New threat of an old problem. Expert Rev Anti Infect Ther. 2008;6:657–69. https://doi.org/10.1586/14787210.6.5.657

    Article  CAS  PubMed  Google Scholar 

  2. Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: A new option for MDR Gram-negative infections. J Antimicrob Chemother. 2016;71:2713–22. https://doi.org/10.1093/jac/dkw239

    Article  CAS  PubMed  Google Scholar 

  3. Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS One. 2021;16:e0249253 https://doi.org/10.1371/journal.pone.0249253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agyare C, Koffuor GA, Boamah VE, Adu F, Mensah KB, Adu-Amoah L. Antimicrobial and Anti-Inflammatory Activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae). Evid Based Complement Alternat Med. 2012;902394. https://doi.org/10.1155/2012/902394

  5. Christopher R, Mgani Q, Nyandoro S, Rousseau A, Vuuren S, Isaacs M, et al. Antitrypanosomal, antiplasmodial, and antibacterial activities of extracts from selected Diospyros and Annonaceae species. J Complement Med Res. 2018;7:161 https://doi.org/10.5455/jcmr.20171205011734

    Article  Google Scholar 

  6. Artizzu N, Bonsignore L, Cottiglia F, Loy G. Studies on the diuretic and antimicrobial activity of Cynodon dactylon essential oil. undefined. Fitoterapia 1996;66:174–5

    Google Scholar 

  7. Izzo AA, Carlo G di, Biscardi D, Fusco R de, Mascolo N, Borrelli F, et al. Biological screening of Italian medicinal plants for antibacterial activity. Phytotherapy Research (United Kingdom). 1995

  8. Silihe KK, Zingue S, Winter E, Awounfack CF, Bishayee A, Desai NN, et al. Ficus umbellata Vahl. (Moraceae) Stem Bark Extracts Exert Antitumor Activities In Vitro and In Vivo. Int J Mol Sci. 2017;18:E1073 https://doi.org/10.3390/ijms18061073

    Article  CAS  PubMed  Google Scholar 

  9. Kamdem MHK, Ojo O, Kemkuignou BM, Talla RM, Fonkui TY, Silihe KK, et al. Pentacyclic Triterpenoids, Phytosteroids and Fatty Acid Isolated from the Stem-bark of Cola lateritia K. Schum. (Sterculiaceae) of Cameroon origin; Evaluation of Their Antibacterial Activity. Arab J Chem. 2022;15:103506 https://doi.org/10.1016/j.arabjc.2021.103506

    Article  CAS  Google Scholar 

  10. Adesina SK, Reisch J. A triterpenoid glycoside from Tetrapleura tetraptera fruit. Phytochemistry. 1985;24:3003–6. https://doi.org/10.1016/0031-9422(85)80044-3

    Article  CAS  Google Scholar 

  11. Adesina SK, Iwalewa EO, Johnny II. Tetrapleura tetraptera Taub- Ethnopharmacology, Chemistry, Medicinal and Nutritional Values- A Review. Journal of Pharmaceutical Research International. 2016;1–22. https://doi.org/10.9734/BJPR/2016/26554

  12. Adewunmi CO, Furu P, Marquis BB, Fagbola M, Olatunji OA. Molluscicidal trials and correlation between the presence of Tetrapleura tetraptera in an area and the absence of the intermediate hosts of schistosomiasis and fascioliasis in Southwest Nigeria. J Ethnopharmacol. 1990;30:169–83. https://doi.org/10.1016/0378-8741(90)90006-F

    Article  CAS  PubMed  Google Scholar 

  13. Aladesanmi AJ, Iwalewa EO, Adebajo AC, Akinkunmi EO, Taiwo BJ, Olorunmola FO, et al. Antimicrobial and Antioxidant Activities of Some Nigerian Medicinal Plants. Afr J Tradit Complement Alter Med. 2006;4:173–84. https://doi.org/10.4314/ajtcam.v4i2.31206

    Article  CAS  Google Scholar 

  14. Mbaveng AT, Chi GF, Bonsou IN, Ombito JO, Yeboah SO, Kuete V, et al. Cytotoxic phytochemicals from the crude extract of Tetrapleura tetraptera fruits towards multi-factorial drug resistant cancer cells. J Ethnopharmacol. 2021;267:113632 https://doi.org/10.1016/j.jep.2020.113632

    Article  CAS  PubMed  Google Scholar 

  15. Ojewole JAO, Adewunmi CO. Anti-inflammatory and hypoglycaemic effects of Tetrapleura tetraptera (Taub) [Fabaceae] fruit aqueous extract in rats. J Ethnopharmacol. 2004;95:177–82. https://doi.org/10.1016/j.jep.2004.06.026

    Article  PubMed  Google Scholar 

  16. Noté OP, Mitaine-Offer A-C, Miyamoto T, Paululat T, Pegnyemb DE, Lacaille-Dubois M-A. Tetrapterosides A and B, two new oleanane-type saponins from Tetrapleura tetraptera. Magn Reson Chem. 2009;47:277–82. https://doi.org/10.1002/mrc.2381

    Article  CAS  PubMed  Google Scholar 

  17. Enema OJ, Adesina SK, Umoh UF, Eseyin OA. Gas chromatography-mass spectroscopy (GC-MS) studies of fixed oil of leaf of Tetrapleura tetraptera Taub. (Mimosaceae). J Pharmacogn. Phytochem 2019;8:1237–41

    CAS  Google Scholar 

  18. Fotie J, Nkengfack AE, Peter MG, Heydenreich M, Fomum ZT Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor. Bulletin of the Chemical Society of Ethiopia. 2004;18. https://doi.org/10.4314/bcse.v18i1.61646

  19. Mbouangouere R, Tane P, Ngamga D, Ngamga D, Djemgou P, Choudhary M, et al. Piptaderol From Piptadenia africana. Afr J Trad Compl Alt Med. 2008;4:294 https://doi.org/10.4314/ajtcam.v4i3.31222

    Article  Google Scholar 

  20. Sultana N, Armstrong JA, Waterman PG. Benzopyran derivatives from the aerial parts of Eriostemon rhomboideus. Phytochemistry. 1999;52:895–900. https://doi.org/10.1016/S0031-9422(99)00338-6

    Article  CAS  Google Scholar 

  21. Rubinstein I, Goad LJ, Clague ADH, Mulheirn LJ. The 220 MHz NMR spectra of phytosterols. Phytochemistry. 1976;15:195–200. https://doi.org/10.1016/S0031-9422(00)89083-4

    Article  CAS  Google Scholar 

  22. Marliyana SD, Wibowo FR, Handayani DS, Kusumaningsih T, Suryanti V, Firdaus M, et al. Stigmasterol and Stigmasterone from Methanol Extract of Calophyllum soulattri Burm. F. Stem Bark. J Kim Sains dan Aplikasi. 2021;24:108–13. https://doi.org/10.14710/jksa.24.4.108-113

    Article  CAS  Google Scholar 

  23. Erwin, Pusparohmana WR, Safitry RD, Marliana E, Usman Kusuma IW. Isolation and characterization of stigmasterol and β-sitosterol from wood bark extract of Baccaurea macrocarpa Miq. Mull. Arg Rjc 2020;13:2552–8. https://doi.org/10.31788/RJC.2020.1345652

    Article  CAS  Google Scholar 

  24. Taiwo BJ, Olubiyi OO, Wang X, Fisusi FA, Akinniyi GA, Van Heerden FR, et al. Schistosomiasis: Snail-vector control, molecular modelling and dynamic studies of bioactive N-acetylglycoside saponins from Tetrapleura tetraptera. Comput Biol Chem. 2018;77:363–72. https://doi.org/10.1016/j.compbiolchem.2018.09.011

    Article  CAS  PubMed  Google Scholar 

  25. Soyler A, Bouillaud D, Farjon J, Giraudeau P, Oztop MH. Real-time benchtop NMR spectroscopy for the online monitoring of sucrose hydrolysis. LWT. 2020;118:108832 https://doi.org/10.1016/j.lwt.2019.108832

    Article  CAS  Google Scholar 

  26. Raya-Gonzalez D, Pamatz-Bolaños T, del Rio-Torres RE, Martinez-Muñoz RE, Ron-Echeverria O, Martinez-Pacheco MM. D-(+)-pinitol, a component of the heartwood of Enterolobium cyclocarpum (Jacq.) Griseb. Z Naturforsch C J Biosci. 2008;63:922–4. https://doi.org/10.1515/znc-2008-11-1225

    Article  CAS  PubMed  Google Scholar 

  27. Rehan M, Ansari FA, Singh O. Isolation, Identification, Antibacterial Activity and Docking of Fatty acid and Fatty Alcohol from Rumex dentatus Leaf Extract. Int J Pharm Sci Rev Res. 2020;5:7–11. https://doi.org/10.47583/ijpsrr.2020.v64i01.002

    Article  CAS  Google Scholar 

  28. Vyas N, Argal A. Isolation and characterization of oleanolic acid from roots of lantana camara. Asian J Pharm Clin Res. 2014;3:189–91

    Google Scholar 

  29. Donfack JH, Fotso GW, Ngameni B, Tsofack FN, Tchoukoua A, Ambassa P, et al. In vitro hepatoprotective and antioxidant activities of the crude extract and isolated compounds from Irvingia gabonensis. 亚洲传统医药. 2010;5:79–88

    CAS  Google Scholar 

  30. Téné DG, Tih AE, Kamdem MHK, Talla RM, Diboue PHB, Melongo YKD, et al. Antibacterial and antioxidant activities of compounds isolated from the leaves of Symphonia globulifera (Clusiaceae) and their chemophenetic significance. Biochemical Syst Ecol. 2021;99:104345

    Article  Google Scholar 

  31. Prachayasittikul S, Saraban P, Cherdtrakulkiat R, Ruchirawat S, Prachayasittikul V. New bioactive triterpenoids and antimalarial activity of Diospyros rubra Lec. EXCLI J. 2010;9:1–10

    PubMed  PubMed Central  Google Scholar 

  32. Pop-Vicas A, Tacconelli E, Gravenstein S, Lu B, D’Agata EMC. Influx of multidrug-resistant, gram-negative bacteria in the hospital setting and the role of elderly patients with bacterial bloodstream infection. Infect Control Hosp Epidemiol. 2009;30:325–31. https://doi.org/10.1086/596608

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garnacho-Montero J, Corcia-Palomo Y, Amaya-Villar R, Martin-Villen L. How to treat VAP due to MDR pathogens in ICU patients. BMC Infect Dis. 2014;14:13 https://doi.org/10.1186/1471-2334-14-135

    Article  Google Scholar 

  34. Vargiu AV, Ruggerone P, Opperman TJ, Nguyen ST, Nikaido H. Molecular Mechanism of MBX2319 Inhibition of Escherichia coli AcrB Multidrug Efflux Pump and Comparison with Other Inhibitors. Antimicrob Agents Chemother. 2014;58:6224–34. https://doi.org/10.1128/AAC.03283-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolska K, Grudniak A, Fiecek B, Kraczkiewicz-Dowjat A, Kurek A. Antibacterial activity of oleanolic and ursolic acids and their derivatives. Open Life Sci. 2010;5:543–53. https://doi.org/10.2478/s11535-010-0045-x

    Article  CAS  Google Scholar 

  36. Achi OK. Composition and antibacterial activities of Tetrapleura tetraptera Taub. pod extracts. Res J Microbiol. 2006;5:146–422. https://doi.org/10.3923/JM.2006.416.422

    Article  Google Scholar 

  37. Lin L, Agyemang K, Abdel-Samie MAS, Cui H. Antibacterial mechanism of Tetrapleura tetraptera extract against Escherichia coli and Staphylococcus aureus and its application in pork. J Food Saf. 2019;39:e12693 https://doi.org/10.1111/jfs.12693

    Article  Google Scholar 

  38. Cui H, Bai M, Sun Y, Abdel-Samie MAS, Lin L. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J Funct Foods. 2018;48:159–66. https://doi.org/10.1016/j.jff.2018.07.021

    Article  CAS  Google Scholar 

  39. Burt S. Essential oils: their antibacterial properties and potential applications in foods–a review. International Journal. Food Microbiol. 2004;94:223–53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  40. Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol. 2006;108:1–9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  41. Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures. J Agric Food Chem. 2016;64:7049–58. https://doi.org/10.1021/acs.jafc.6b02345

    Article  CAS  PubMed  Google Scholar 

  42. Ramprasath VR, Awad AB. Role of Phytosterols in Cancer Prevention and Treatment. J AOAC Int. 2015;98:735–8. https://doi.org/10.5740/jaoacint.SGERamprasath

    Article  CAS  PubMed  Google Scholar 

  43. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the South African Medical Research Council with funds received from the South African National Department of Health, and the UK Medical Research Council with funds received from the UK Government’s Newton Fund. The authors are also thankful to the Department of Chemical Sciences and the Department of Biotechnology and Food Technology of the University of Johannesburg for providing laboratory space, chemicals and equipment that allowed us to carry on this work.

Author contribution

CRediT authorship contribution statement. MHKK: Conceptualization, Investigation, Methodology, Writing - original draft. GLFM: Review-writing & review. KKS: Writing - review & editing. GKM: Cytotoxic assay, Review-editing. MPM: Review & editing. TAM: Formal analysis, Review-editing. CMT: Writing - review & editing. JLT: Formal analysis, Methodology and review. OO: Review & editing. TYF: Antibacterial analysis. EMM: Supervision, Writing - review & editing. DTN: Supervision, Writing - review & editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Hermann Kengne Kamdem, Edwin Mpho Mmutlane or Derek Tantoh Ndinteh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdem, M.H.K., Melacheu, G.L.F., Silihe, K.K. et al. Cytotoxic and antibacterial activities of compounds isolated from the fruits and stem-bark of Tetrapleura tetraptera (Schumach. & Thonn.) Taub. (Fabaceae). Med Chem Res 31, 1948–1958 (2022). https://doi.org/10.1007/s00044-022-02956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02956-1

Keywords

Navigation