Skip to main content
Log in

Discovery of α-methylene-γ-lactone-δ-epoxy derivatives with anti-cancer activity: synthesis, SAR study, and biological activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of new Parthenolide analogs (4a-4k) were designed and synthesized. It was known that most of the compounds showed antiproliferative activities against the six cancer cell lines including DU-145, Hela, HepG2, MCF-7, SGC-7901 and K562 by evaluating their biological activities. Among them, compound 4f exhibited better cell proliferative inhibition against the tested cell lines. In addition, anticancer mechanism studies illustrated that compound 4f could induce apoptosis in MCF-7/ADR cells via PI3K/Akt, MAPKs pathway and caspase-dependent mitochondrial pathway. More importantly, compound 4f induced an increase of autophagy levels in MCF-7/ADR cells. It was found that compared with the lead compound Parthenolide, compound 4f showed more significant anticancer effects. Our research provided an efficient strategy for targeting anticancer drug development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hussain S, Singh A, Nazir SU, et al. Cancer drug resistance: afleet to conquer. J Cell Biochem 2019;120:14213–25. https://doi.org/10.1002/jcb.28782

    Article  CAS  PubMed  Google Scholar 

  2. Singh M, Tammam S, Boushehri MS, et al. MDR in cancer: addressing the underlying cellular alterations with the use of nanocarriers. Pharm Res 2017;126:2–30. https://doi.org/10.1016/j.phrs.2017.07.023

    Article  CAS  Google Scholar 

  3. Vera AD, Gupta P, Lei ZN, et al. Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: In vitro and in vivo. Cancer Lett 2019;442:91–103. https://doi.org/10.1016/j.canlet.2018.10.020

    Article  CAS  PubMed  Google Scholar 

  4. Ranjbar S, Khonkarn R, Moreno A, et al. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol Appl Pharm 2019;362:136–49. https://doi.org/10.1016/j.taap.2018.10.025

    Article  CAS  Google Scholar 

  5. Cao Y, Li ZY, Mao LZ, et al. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur J Med Chem 2019;162:423–34. https://doi.org/10.1016/j.ejmech.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Ding Y, Xiao M, et al. Anti-tumor compound RY10-4 suppresses multidrug resistance in MCF-7/ADR cells by inhibiting PI3K/Akt/NF-κB signaling. Chem-Biol Interact 2017;278:22–31.

    Article  CAS  Google Scholar 

  7. Wu YS, Chen XX, Wang SD, et al. Advances in the relationship between glycosyltransferases and multidrug resistance in cancer. Clin Chim Acta 2019;495:417–21. https://doi.org/10.1016/j.cca.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  8. Yakirevich E, Sabo E, Naroditsky I, et al. Multidrug resistance-related phenotype and apoptosis-related protein expression in ovarian serous carcinomas. Dig World Core Med J 2006;100:152–9. https://doi.org/10.1016/j.ygyno.2005.08.050

    Article  CAS  Google Scholar 

  9. Boysen M, Kityk R, Mayer M. Hsp70- and Hsp90-mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants. Mol Cell 2019;74:831–43. https://doi.org/10.1016/j.molcel.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  10. Su YM, Zhang XP, Sinko P. Exploitation of drug-induced Bcl-2 overexpression for restoring normal apoptosis function: a promising new approach to the treatment of multidrug resistant cancer. Cancer Lett 2007;253:115–23. https://doi.org/10.1016/j.canlet.2007.01.018

    Article  CAS  PubMed  Google Scholar 

  11. Choi BH, Kim CG, Lim Y, et al. Curcumin down-regulates the multidrug-resistance mdr l b gene by inhibiting the P13K/Akt/NF-κB pathway. Cancer Lett 2008;259:111–8. https://doi.org/10.1016/j.canlet.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Jandial DD, Blair CA, Zhang S, et al. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr Cancer Drug Targets 2014;14:181–200. https://doi.org/10.2174/1568009614666140122160515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghantous A, Sinjab A, Herceg Z, et al. Parthenolide: from plant shoots to cancer roots. Drug Disco Today 2013;18:894–905. https://doi.org/10.1016/j.drudis.2013.05.005

    Article  CAS  Google Scholar 

  14. Kalia M, Yadav VK, Singh PK, et al. Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sci 2018;199:151–8. https://doi.org/10.1016/j.lfs.2018.03.013

    Article  CAS  Google Scholar 

  15. Jafari N, Nazeri S, Enferadi ST. Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression Elongation factor α-1 expression. Phytomedicine 2018;41:67–73. https://doi.org/10.1016/j.phymed.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  16. Kempema AM, Widen JC, Hexum JK, et al. Synthesis and antileukemic activities of C1-C10-modified Parthenolide analogues. Bioorg Med Chem 2015;23:4737–45. https://doi.org/10.1016/j.bmc.2015.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu YZ, Gu XY, Peng SJ, et al. Design, synthesis and biological evaluation of novel sesquiterpene mustards as potential anticancer agents. Eur J Med Chem 2015;94:284–97. https://doi.org/10.1016/j.ejmech.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  18. Schepetkin IA, Kirpotina LN, Mitchell PT, et al. The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation. Phytochemistry 2018;146:36–46. https://doi.org/10.1016/j.phytochem.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  19. Diamanti P, Cox CV, Moppett JP, et al. Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia. Blood 2013;121:1384–93. https://doi.org/10.1182/blood-2012-08-448852

    Article  CAS  PubMed  Google Scholar 

  20. Kim CY, Kang B, Suh HJ, et al. Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway. Pharm Res 2019;145:104259 https://doi.org/10.1016/j.phrs.2019.104259

    Article  CAS  Google Scholar 

  21. Malgorzata C, Kamila K, Malgorzata SS, et al. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres. Cancer Biol Ther 2013;14:135–45. https://doi.org/10.4161/cbt.22952

    Article  CAS  Google Scholar 

  22. Nakshatri H, Sweeney CJ. Use of Parthenolide to inhibit cancer, Indiana University Research and Technology Coporation Patent. US6890946. 2003.

  23. Skalska J, Brookes PS, Nadtochiy SM, et al. Modulation of cell surface protein free thiols; a potential novel mechanism of action of the sesquiterpene lactone parthenolide in non-Hodgkin’s lymphoma. Blood 2009;114:3774 https://doi.org/10.1182/blood.V114.22.3774.3774

    Article  Google Scholar 

  24. Talib WH, Al KLT. Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53-dependent apoptosis and inhibiting VEGF expression. Biomedicine Pharmacother 2018;107:1488–95. https://doi.org/10.1016/j.biopha.2018.08.139.

    Article  CAS  Google Scholar 

  25. Hewamana S, Alghazal S, Lin TT, et al. The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 2008;111:4681–9. https://doi.org/10.1182/blood-2007-11-125278

    Article  CAS  PubMed  Google Scholar 

  26. Ge WZ, Hao X, Han FZ, et al. Synthesis and structure-activity relationship studies of parthenolide derivatives as potential anti-triple negative breast cancer agents. Eur J Medicinal Chem 2019;166:445–69. https://doi.org/10.1016/j.ejmech.2019.01.058

    Article  CAS  Google Scholar 

  27. Garcı́a-Piñeres AJ, Castro V, Mora G, et al. Cysteine 38 in p65/NF-κB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 2001;276:39713–20. https://doi.org/10.1074/jbc.M101985200

    Article  CAS  PubMed  Google Scholar 

  28. Jun TF, De LW, Yong LW, et al. New antifungal scaffold derived from a natural pharmacophore: synthesis of α-methylene-γ-butyrolactone derivatives and their antifungal activity against Colletotrichum lagenarium. Bioorg Med Chem Lett 2013;23:4393–7. https://doi.org/10.1016/j.bmcl.2013.05.073

    Article  CAS  Google Scholar 

  29. Han C, Barrios FJ, Mark VR, et al. Semisynthetic derivatives of sesquiterpene lactones by palladium-catalyzed arylation of theα-methylene-γ-lactone substructure. J Org Chem 2009;74:7176–9. https://doi.org/10.1021/jo901533e

    Article  CAS  PubMed  Google Scholar 

  30. Ravinder R, Laura J. Cross metathesis of α-methylene lactones II: γ- and δ-lactones. Cheminform 2007;38:1699–701. https://doi.org/10.1002/chin.200736092.

    Article  Google Scholar 

  31. Yusuke M, Masaki T. Construction of spiro-fused 2-oxindole/α-methylene-γ-butyrolactone systems with extremely high enantioselectivity via indium-catalyzed amide allylation of N methyl isatin. Org Lett 2013;15:6182–5. https://doi.org/10.1002/chin.201421109

    Article  Google Scholar 

  32. Irakusne L, Santiago R, Javier I, Florenci VG. Highly stereoselective epoxidation of α-methyl-γ-hydroxy-α, β-unsaturated esters: rationalization and synthetic applications. J Org Chem 2007;72:6614–7. https://doi.org/10.1021/jo0709955

    Article  CAS  Google Scholar 

  33. Antonio G, Silva MH, Juan I, et al. Synthesis and antiproliferative activity of a new compound containing an α-methylene-γ-lactone group. J Med Chem 2002;45:2358–61. https://doi.org/10.1021/jm025518n

    Article  CAS  Google Scholar 

  34. Baraldi PG, Nunez M, Tabrizi MA, et al. Design, synthesis, and biological evaluation of hybrid molecules containing alpha-methylene-gamma-butyrolactones and polypyrrole minor groove binders. J Medicinal Chem 2004;47:2877–86. https://doi.org/10.1021/jm031104y

    Article  CAS  Google Scholar 

  35. Miyazawa M, Shimabayashi H, Hayashi S, et al. Synthesis and biological activity of alpha-methylene-gamma-lactones as new aroma chemicals. J Agric Food Chem 2000;48:5406–10. https://doi.org/10.1021/jf000346t

    Article  CAS  PubMed  Google Scholar 

  36. Tang Q, Peng T, Hu J, et al. Discovery of N-(3-bromo-1H-indol-5-yl)-quinazolin-4-amine as an effective molecular skeleton to develop reversible/irreversible pan-HER inhibitors. Eur J Med Chem 2022;233:114249 https://doi.org/10.1016/j.ejmech.2022.114249

    Article  CAS  PubMed  Google Scholar 

  37. Nakano H, Miyao T, Funatsu K. Exploring topological pharmacophore graphs for scaffold hopping. J Chem Inf Model 2020;60:2073–81. https://doi.org/10.1021/acs.jcim.0c00098.

    Article  CAS  PubMed  Google Scholar 

  38. Pathak D, Choudhary S, Singh PK, et al. Pharmacophore-based designing of putative ROS-1 targeting agents for NSCLC. Mol Divers 2021;25:1091–102. https://doi.org/10.1007/s11030-020-10036-y

    Article  CAS  PubMed  Google Scholar 

  39. Ghamari N, Kouhi HS, Zivkovic A, et al. Guided rational design with scaffold hopping leading to novel histamine H receptor ligands. Bioorg Chem 2021;117:105411 https://doi.org/10.1016/j.bioorg.2021.105411

    Article  CAS  PubMed  Google Scholar 

  40. Schneidera G, Schneiderband P, Renner S. Scaffold-hopping: how far can you jump. Qsar Combinatorial Sci. 2006;25:1162–71. https://doi.org/10.1002/qsar.200610091.

    Article  CAS  Google Scholar 

  41. Langdon SR, Ertl P, Brown N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Qsar Combinatorial Sci 2010;29:366–85. https://doi.org/10.1002/minf.201000019

    Article  CAS  Google Scholar 

  42. BHm HJ, Flohr A, Stahl M. Scaffold hopping. Drug Disco Today Technol 2004;1:217–24. https://doi.org/10.1016/j.ddtec.2004.10.009

    Article  CAS  Google Scholar 

  43. Zhong CN, Mai YC, Gao HY, et al. Mitochondrial targeting of TR3 is involved in TPA induced apoptosis in breast cancer cells. Gene 2019;693:61–68. https://doi.org/10.1016/j.gene.2018.12.072

    Article  CAS  PubMed  Google Scholar 

  44. Mei H, Li J, Cai SS, et al. Mitochondria-acting carrier-free nanoplatform self-assembled by α-tocopheryl succinate carrying cisplatin for combinational tumor therapy. Regen Biomater 2021;8:rbab029 https://doi.org/10.1093/rb/rbab029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vázquez CL, Colombo MI. Chapter 6 assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ‐BSA. Method Enzymol 2019;452:85–95. https://doi.org/10.1016/s0076-6879(08)03606-9

    Article  Google Scholar 

  46. Li P, Li YW, Ma LT. Long noncoding RNA highly upregulated in liver cancer promotes the progression of hepatocellular carcinoma and attenuates the chemosensitivity of oxaliplatin by regulating miR-383-5p/vesicle-associated membrane protein-2 axis. Pharm Res Perspect 2021;9:e00815 https://doi.org/10.1002/prp2.815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. SJCX21_1294).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Ren or Kun Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Yu, P., Zhang, M. et al. Discovery of α-methylene-γ-lactone-δ-epoxy derivatives with anti-cancer activity: synthesis, SAR study, and biological activity. Med Chem Res 31, 1803–1817 (2022). https://doi.org/10.1007/s00044-022-02925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02925-8

Keywords

Navigation