Skip to main content
Log in

Pharmacophore-based designing of putative ROS-1 targeting agents for NSCLC

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is a fatal non-immunogenic malignancy, and proto-oncogene receptor tyrosine kinase (ROS-1) is one of its clinically relevant biomarkers. In this context, herein, we report a series of benzimidazol-2-amine derivatives which were synthesized on the basis of the pharmacophore of ROS-1 and evaluated for anti-proliferative activity. For this, the in silico receptor–ligand pharmacophore model of ROS-1, previously published by our own group, was utilized to screen out an in-house database of small molecule heterocycles. Docking analysis of the selected compounds was carried out within the active site of wild-type (WT) ROS-1 as well as Gly2032Arg mutant ROS-1 protein, which confirmed the retention of conserved interaction between selected molecules and hinge region amino acids Glu2027 and Met2029. Docking was followed by molecular dynamics simulations for the stability of the complexes and calculation of the MM-GBSA score for binding affinity. Finally, compounds were synthesized and the anti-proliferative potential of compounds was evaluated using the A549 cell line. Compounds 3a and 3b presented significant GI50 values between 23.0 and 25.4 μM, among all the tested compounds.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

References

  1. Levy A, Faivre-Finn C, Hasan B, De Maio E, Berghoff AS, Girard N, Greillier L, Lantuéjoul S, O’Brien M, Reck M (2018) Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer 93:37–46. https://doi.org/10.1016/j.ejca.2018.01.067

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA-Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  4. Singh PK, Singh H, Silakari O (2016) Kinases inhibitors in lung cancer: from benchside to bedside. BBA-Rev Cancer 1886:128–140. https://doi.org/10.1016/j.bbcan.2016.07.002

    Article  CAS  Google Scholar 

  5. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870. https://doi.org/10.1200/JCO.2011.35.6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Go H, Kim D-W, Kim D, Keam B, Kim TM, Lee S-H, Heo DS, Bang Y-J, Chung DH (2013) Clinicopathologic analysis of ROS1-rearranged non-small-cell lung cancer and proposal of a diagnostic algorithm. J Thorac Oncol 8:1445–1450. https://doi.org/10.1097/JTO.0b013e3182a4dd6e

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier C, Birnbaum D, Waitches G, Fasano O, Wigler M (1986) Characterization of an activated human ros gene. Mol Cell Biol 6:3109–3116. https://doi.org/10.1128/MCB.6.9.3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song Z, Su H, Zhang Y (2016) Patients with ROS 1 rearrangement-positive non-small-cell lung cancer benefit from pemetrexed-based chemotherapy. Cancer Med 5:2688–2693. https://doi.org/10.1002/cam4.809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luk PP, Selinger CI, Mahar A, Cooper WA (2018) Biomarkers for ALK and ROS1 in lung cancer: immunohistochemistry and fluorescent in situ hybridization. Arch Pathol Lab Med 142:922–928. https://doi.org/10.5858/arpa.2017-0502-RA

    Article  CAS  PubMed  Google Scholar 

  10. Singh PK, Silakari O (2017) chemotherapeutics-resistance “arms” race: an update on mechanisms involved in resistance limiting Egfr inhibitors in lung cancer. Life Sci 186:25–32. https://doi.org/10.1016/j.lfs.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  11. Shaw AT, Solomon BJ, Chiari R, Riely GJ, Besse B, Soo RA, Kao S, Lin C-C, Bauer TM, Clancy JS (2019) Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol 20:1691–1701. https://doi.org/10.1016/S1470-2045(19)30655-2

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Wang Y, Wan S, Zhang J (2018) Investigation on the binding mechanism of loratinib with the c-ros oncogene 1 (ROS1) receptor tyrosine kinase via molecular dynamics simulation and binding free energy calculations. J Biomol Struct Dyn 36:3106–3113. https://doi.org/10.1080/07391102.2017.1378127

    Article  CAS  PubMed  Google Scholar 

  13. Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, Elferich J, Agarwal A, Tyner JW, Shinde UP, Lowe SW (2013) Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. PNAS 110:19519–19524. https://doi.org/10.1073/pnas.1319583110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou HY, Li Q, Engstrom LD, West M, Appleman V, Wong KA, McTigue M, Deng Y-L, Liu W, Brooun A (2015) PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. PNAS 112:3493–3498. https://doi.org/10.1073/pnas.1420785112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J (2015) PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28:70–81. https://doi.org/10.1016/j.ccell.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Awad MM, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JR, Mino-Kenudson M, Christensen JG, Iafrate AJ, Engelman JA, Shaw AT (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 368:2395–2401. https://doi.org/10.1056/NEJMoa1215530

    Article  CAS  PubMed  Google Scholar 

  17. Sun H, Li Y, Tian S, Wang J, Hou T (2014) P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput Biol 10:e1003729. https://doi.org/10.1371/journal.pcbi.1003729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, Engelman JA, Fujita N (2015) Cabozantinib overcomes crizotinib resistance in ROS1 fusion–positive cancer. Clin Cancer Res 21:166–174. https://doi.org/10.1158/1078-0432.CCR-14-1385

    Article  CAS  PubMed  Google Scholar 

  19. Katayama R, Gong B, Togashi N, Miyamoto M, Kiga M, Iwasaki S, Kamai Y, Tominaga Y, Takeda Y, Kagoshima Y (2019) The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-11496-z

    Article  CAS  Google Scholar 

  20. Studio D (2013) Accelrys Inc. San Diego, CA, USA

  21. Leonard NJ, Curtin DY, Beck KM (1947) Sulfonate Salts of substituted benzimidazoles1. J Am Chem Soc 69:2459–2461. https://doi.org/10.1021/ja01202a062

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki T, Minamoto K, Itoh H (1978) Convenient synthesis of some purine 8,5′-imino cyclonucleosides. J Org Chem 43:2320–2325. https://doi.org/10.1021/jo00406a003

    Article  CAS  Google Scholar 

  23. Pathak D, Chadha N, Silakari O (2016) Identification of non-resistant ROS-1 inhibitors using structure based pharmacophore analysis. J Mol Graph Model 70:85–93. https://doi.org/10.1016/j.jmgm.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  24. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  25. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  26. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  Google Scholar 

  27. Maestro S (2011) Version 9.2. LLC, New York

  28. Ligprep (2012) Version 2.5, user manual. Schrödinger, LLC New York, New York

  29. Haider MK, Bertrand H-O, Hubbard RE (2011) Predicting fragment binding poses using a combined MCSS MM-GBSA approach. J Chem Inf Model 51:1092–1105. https://doi.org/10.1021/ci100469n

    Article  CAS  PubMed  Google Scholar 

  30. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519. https://doi.org/10.1021/ct900587b

    Article  CAS  PubMed  Google Scholar 

  31. Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC’06: Proceedings of the 2006 ACM/IEEE conference on supercomputing. IEEE, pp 43–43. https://doi.org/10.1109/SC.2006.54

  32. Choudhary S, Silakari O (2019) hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: unwinding the hydrolytic mechanism using in silico approaches. J Mol Graph Model 91:148–163. https://doi.org/10.1016/j.jmgm.2019.06.012

    Article  CAS  PubMed  Google Scholar 

  33. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719–16729. https://doi.org/10.1039/C4CP01388C

    Article  CAS  PubMed  Google Scholar 

  34. Du J, Sun H, Xi L, Li J, Yang Y, Liu H, Yao X (2011) Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM–GBSA calculation. J Comput Chem 32:2800–2809. https://doi.org/10.1002/jcc.21859

    Article  CAS  PubMed  Google Scholar 

  35. Singh PK, Silakari O (2018) Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET. Bioorg Chem 79:163–170. https://doi.org/10.1016/j.bioorg.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  36. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author(s) would like to acknowledge Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, India, for cell line studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Silakari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Choudhary, S., Singh, P.K. et al. Pharmacophore-based designing of putative ROS-1 targeting agents for NSCLC. Mol Divers 25, 1091–1102 (2021). https://doi.org/10.1007/s11030-020-10036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10036-y

Keywords

Navigation