Skip to main content

Advertisement

Log in

Chemical and biological aspects of posaconazole as a classic antifungal agent with non-classical properties: highlighting a tetrahydrofuran-based drug toward generation of new drugs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Posaconazole (PSZ, SCH 56592), is a new generation of orally active triazole antifungal agent with a tetrahydrofuran center, derived from itraconazole (ITZ). This drug has a broader spectrum of activity respect to the dioxolane-based triazoles. Structurally, PSZ molecule with four chiral centers and long side chain has a complicated structure. In this review, we describe general aspects of PSZ, including chemistry, pharmacological properties, mechanism of action, synthetic strategies, synthesis of key intermediates, structure-antifungal activity relationships, and the design of its prodrugs. Finally, the non-classical properties of PSZ including antitrypanosomal, antileishmanial and hedgehog (Hh) signaling pathway inhibitory activities will be discussed. By highlighting the information and experiences gained with PSZ, we can better move toward newer compounds of this generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

9-BBN:

9-Borabicyclo[3,3,1]nonane

BCC:

Basal cell carcinoma

BINAP:

2,2′-Bis(diary1phosphino)-1,l′-binaphthyl

BOB:

Benzyloxybutyrate

BSA:

Bovine serum albumin

CD:

Chagas disease

DBCP:

Dibenzylchlorophosphate

DCM:

Dichloromethane

DIBAL-H:

Diisobutylaluminum hydride

DIPEA:

Diisopropylethylamine

DMAP:

N,N′-(dimethylamino)pyridine

DMF:

N,N-dimethylformamide

DMSO:

Dimethyl sulfoxide

FLZ:

Fluconazole

GVHD:

Graft versus host disease

HATU:

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5b]pyridinium 3-oxide hexafluorophosphate

Hh:

Hedgehog

HSGT:

Hematopoietic stem cell transplantation

ITZ:

Itraconazole

LAH:

Lithium aluminum hydride

LT:

Long-tail

MB:

Medulloblastoma

MD:

Molecular dynamic

MTBE:

Methyl tertiary-butyl ether

NBS:

N-Bromosuccinimide

NMM:

N-Methylmorpholine

OXZ:

(4R)-(+)-4-benzyl-2-oxazolidinone

PSZ:

Posaconazole

SAR:

Structure-activity relationship

SOB:

4-Silyloxybutyrates

SMO:

Smoothened

ST:

Short-tail

TBAF:

Tetrabutylammonium fluoride

TBSCl:

tert-Butyldimethylsilyl chloride

TEA:

Triethylamine

THF:

Tetrahydrofuran

VRZ:

Voriconazole

References

  1. Nagaraj S, Manivannan S, Narayan S. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: a systematic review. J Basic Microbiol. 2021;61:849–73.

    Article  PubMed  Google Scholar 

  2. Panagopoulou P, Roilides E. Evaluating posaconazole, its pharmacology, efficacy and safety for the prophylaxis and treatment of fungal infections. Expert Opin Pharmacother. 2022;23:175–99.

    Article  CAS  PubMed  Google Scholar 

  3. Czyrski A, Resztak M, Świderski P, Brylak J, Główka FK. The Overview on the Pharmacokinetic and Pharmacodynamic Interactions of Triazoles. Pharmaceutics. 2021;13:1961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schiller DS, Fung HB. Posaconazole: an extended-spectrum triazole antifungal agent. Clin Ther. 2007;29:1862–86.

    Article  CAS  PubMed  Google Scholar 

  5. Nomeir AA, Pramanik BN, Heimark L, Bennett F, Veals J, Bartner P, et al. Posaconazole (Noxafil, SCH 56592), a new azole antifungal drug, was a discovery based on the isolation and mass spectral characterization of a circulating metabolite of an earlier lead (SCH 51048). J Mass Spectrom. 2008;43:509–17.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett F, Saksena AK, Lovey RG, Liu Y-T, Patel NM, Pinto P, et al. Hydroxylated analogues of the orally active broad spectrum antifungal, Sch 51048 (1), and the discovery of posaconazole [Sch 56592; 2 or (S, S)-5]. Bioorg Med Chem Lett. 2006;16:186–90.

    Article  CAS  PubMed  Google Scholar 

  7. Beredaki M-I, Arendrup MC, Andes D, Mouton JW, Meletiadis J. The role of new posaconazole formulations in the treatment of Candida albicans infections: data from an in vitro pharmacokinetic-pharmacodynamic model. Antimicrobial Agents Chemother. 2021;65:e01292–01220.

    Article  CAS  Google Scholar 

  8. Pfaller MA, Carvalhaes CG, Messer SA, Rhomberg PR, Castanheira M. In vitro activity of posaconazole and comparators versus opportunistic filamentous fungal pathogens globally collected during 8 years. Diagnostic Microbiol Infect Dis. 2021;101:115473.

    Article  CAS  Google Scholar 

  9. Yang M, Cheng L, Dai Q, Yang B, Yuan Q, Yu M, et al. A novel cryptococcal meningitis therapy: the combination of amphotericin B and posaconazole promotes the distribution of amphotericin B in the brain tissue. BioMed Res Int. 2020;2020:8878158.

    PubMed  PubMed Central  Google Scholar 

  10. Szekalska M, Wróblewska M, Trofimiuk M, Basa A, Winnicka K. Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Mar Drugs. 2019;17:692.

    Article  CAS  PubMed Central  Google Scholar 

  11. González GM, Fothergill AW, Sutton DA, Rinaldi MG, Loebenberg D. In vitro activities of new and established triazoles against opportunistic filamentous and dimorphic fungi. Med Mycol. 2005;43:281–4.

    Article  PubMed  CAS  Google Scholar 

  12. Diekema D, Messer S, Hollis R, Jones R, Pfaller M. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol. 2003;41:3623–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munayyer HK, Mann PA, Chau AS, Yarosh-Tomaine T, Greene JR, Hare RS, et al. Posaconazole is a potent inhibitor of sterol 14α-demethylation in yeasts and molds. Antimicrobial Agents Chemother. 2004;48:3690–6.

    Article  CAS  Google Scholar 

  14. Gonzalez-Lara MF, Ostrosky-Zeichner L. Fungal Infections of the brain, in: Neurological Complications of Infectious Diseases, Springer, Switzerland; 2021. p. 201–24.

  15. Góralska K, Blaszkowska J, Dzikowiec M. Neuroinfections caused by fungi. Infection. 2018;46:443–59.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stewart AG, Lane S. Just as good but better tolerated: Posaconazole as first-line therapy for invasive aspergillosis. Hematologist. 2021;18.

  17. Grau S, Cámara R, Jurado M, Sanz J, Aragón B, Gozalbo I. Cost-effectiveness of posaconazole tablets versus fluconazole as prophylaxis for invasive fungal diseases in patients with graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Eur J Health Econ. 2018;19:627–36.

    Article  PubMed  Google Scholar 

  18. Zhang S, Zhang P, Wang Z, Liu L, He Y, Jiang E, et al. Posaconazole oral suspension as salvage therapy for invasive fungal disease in patients with hematological diseases. Future Microbiol. 2019;14:477–88.

    Article  CAS  PubMed  Google Scholar 

  19. Maertens JA, Rahav G, Lee DG, Ponce-de-León A, Ramírez Sánchez IC, Klimko N, et al. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: a phase 3, randomised, controlled, non-inferiority trial. Lancet. 2021;397:499–509.

    Article  CAS  PubMed  Google Scholar 

  20. Clark NM, Grim SA, Lynch JP III. Posaconazole: use in the prophylaxis and treatment of fungal infections. Semin Respir Crit Care Med. 2015;36:767–85.

    Article  PubMed  Google Scholar 

  21. Chen L, Krekels EH, Verweij PE, Buil JB, Knibbe CA, Brüggemann RJ. Pharmacokinetics and pharmacodynamics of posaconazole. Drugs. 2020;80:671–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: a review on structures, SAR, and mechanism of action. Bioorganic Chem. 2020;104:104240.

    Article  CAS  Google Scholar 

  23. Irannejad H, Emami S, Mirzaei H, Hashemi SM. In silico prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-demethylase using molecular dynamic simulation and docking approaches. Inform Med Unlocked. 2020;20:100366.

    Article  Google Scholar 

  24. Irannejad H, Emami S, Mirzaei H, Hashemi SM. Data on molecular docking of tautomers and enantiomers of ATTAF-1 and ATTAF-2 selectivty to the human/fungal lanosterol-14α-demethylase. Data Brief. 2020;31:105942.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shi N, Zheng Q, Zhang H. Molecular dynamics investigations of binding mechanism for triazoles inhibitors to CYP51. Front Mol Biosci. 2020;7:266.

    Google Scholar 

  26. Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017;292:6728–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fischer A, Don CG, Smiesko M. Molecular dynamics simulations reveal structural differences among allelic variants of membrane-anchored cytochrome P450 2D6. J Chem Inf Modeling. 2018;58:1962–75.

    Article  CAS  Google Scholar 

  28. Emami S, Ghobadi E, Saednia S, Hashemi SM. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur J Med Chem. 2019;170:173–94.

    Article  CAS  PubMed  Google Scholar 

  29. Keniya MV, Sabherwal M, Wilson RK, Woods MA, Sagatova AA, Tyndall JD, et al. Crystal structures of full-length lanosterol 14α-demethylases of prominent fungal pathogens Candida albicans and Candida glabrata provide tools for antifungal discovery. Antimicrobial Agents Chemother. 2018;62:e01134–18.

    Google Scholar 

  30. Ezzet F, Wexler D, Courtney R, Krishna G, Lim J, Laughlin M. Oral bioavailability of posaconazole in fasted healthy subjects. Clin Pharmacokinetics. 2005;44:211–20.

    Article  CAS  Google Scholar 

  31. Herbrecht R. Posaconazole: a potent, extended‐spectrum triazole anti‐fungal for the treatment of serious fungal infections. Int J Clin Pract. 2004;58:612–24.

    Article  CAS  PubMed  Google Scholar 

  32. Courtney R, Radwanski E, Lim J, Laughlin M. Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting healthy men. Antimicrobial Agents Chemother. 2004;48:804–8.

    Article  CAS  Google Scholar 

  33. Li Y, Theuretzbacher U, Clancy CJ, Nguyen MH, Derendorf H. Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinetics. 2010;49:379–96.

    Article  CAS  Google Scholar 

  34. Keating GM. Posaconazole. Drugs. 2005;65:1553–67.

    Article  CAS  PubMed  Google Scholar 

  35. Sabatelli F, Patel R, Mann P, Mendrick C, Norris C, Hare R, et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrobial Agents Chemother. 2006;50:2009–15.

    Article  CAS  Google Scholar 

  36. Suh HJ, Kim I, Cho J-Y, Park S-I, Yoon SH, Hwang J-H, et al. Early therapeutic drug monitoring of Posaconazole Oral suspension in patients with hematologic malignancies. Therapeutic Drug Monit. 2018;40:115–9.

    Article  CAS  Google Scholar 

  37. Courtney R, Pai S, Laughlin M, Lim J, Batra V. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrobial Agents Chemother. 2003;47:2788–95.

    Article  CAS  Google Scholar 

  38. Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem. 2011;7:668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II. Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect Dis. 2005;5:775–85.

    Article  CAS  PubMed  Google Scholar 

  40. Groll AH, Walsh TJ. Posaconazole: clinical pharmacology and potential for management of fungal infections. Expert Rev Anti-infective Ther. 2005;3:467–87.

    Article  CAS  Google Scholar 

  41. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44:2–12.

    Article  CAS  PubMed  Google Scholar 

  42. Wiederhold NP. Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections. Clin Pharmacol: Adv Appl. 2016;8:1.

    CAS  Google Scholar 

  43. Leelawattanachai P, Montakantikul P, Nosoongnoen W, Chayakulkeeree M. Pharmacokinetic/pharmacodynamic study of posaconazole delayed-release tablet in a patient with coexisting invasive aspergillosis and mucormycosis. Therapeutics Clin Risk Manag. 2019;15:589.

    Article  CAS  Google Scholar 

  44. Schönbeck C, Gaardahl K, Houston B. Drug solubilization by mixtures of cyclodextrins: additive and synergistic effects. Mol Pharm. 2019;16:648–54.

    Article  PubMed  CAS  Google Scholar 

  45. Ma S-X, Chen W, Yang X-D, Zhang N, Wang S-J, Liu L, et al. Alpinetin/hydroxypropyl-β-cyclodextrin host–guest system: Preparation, characterization, inclusion mode, solubilization and stability. J Pharm Biomed Anal. 2012;67:193–200.

    Article  PubMed  CAS  Google Scholar 

  46. Tang P, Li S, Wang L, Yang H, Yan J, Li H. Inclusion complexes of chlorzoxazone with β-and hydroxypropyl-β-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym. 2015;131:297–305.

    Article  CAS  PubMed  Google Scholar 

  47. Tang P, Ma X, Wu D, Li S, Xu K, Tang B, et al. Posaconazole/hydroxypropyl-β-cyclodextrin host–guest system: improving dissolution while maintaining antifungal activity. Carbohydr Polym. 2016;142:16–23.

    Article  CAS  PubMed  Google Scholar 

  48. Xu F, Xu Y, Liu G, Zhang M, Qiang S, Kang J. Separation of twelve posaconazole related stereoisomers by multiple heart-cutting chiral–chiral two-dimensional liquid chromatography. J Chromatogr A. 2020;1618:460845.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Huang Y, Zhao X, Li Z. Concise synthesis of 1, 3-diacetoxy-2-[2′-(2′′, 4′′-difluorophenyl) prop-2′-en-1′-yl]propane: An Intermediate for Posaconazole. Synthetic Commun. 2015;45:734–40.

  50. Saksena AK, Girijavallabhan VM, Lovey RG, Pike RE, Desai JA, Ganguly AK, et al. Enantioselective synthesis of the optical isomers of broad-spectrum orally active antifungal azoles, Sch 42538 and Sch 45012. Bioorg Med Chem Lett. 1994;4:2023–8.

    Article  CAS  Google Scholar 

  51. Lovey RG, Saksena AK, Girijavallabhan VM, Blundell P, Guzik H, Loebenberg D, et al. Synthesis and antifungal activity of the 2, 2, 5-tetrahydrofuran regioisomers of SCH 51048. Bioorg Med Chem Lett. 2002;12:1739–42.

    Article  CAS  PubMed  Google Scholar 

  52. Noé E, Séraphin D, Zhang Q, Djaté F, Hénin J, Laronze J-Y, et al. Synthesis of the new (cyclopenta [b] pyrrolo [1, 2-d]) azepino [4, 5-b] indole ring system. Tetrahedron Lett. 1996;37:5701–4.

    Article  Google Scholar 

  53. Tamao K, Sumitani K, Kiso Y, Zembayashi M, Fujioka A, Kodama S-I, et al. Nickel-phosphine complex-catalyzed Grignard coupling. I. Cross-coupling of alkyl, aryl, and alkenyl Grignard reagents with aryl and alkenyl halides: general scope and limitations. Bull Chem Soc Jpn. 1976;49:1958–69.

    Article  CAS  Google Scholar 

  54. Cahiez G, Avedissian H. Highly stereo-and chemoselective iron-catalyzed alkenylation of organomagnesium compounds. Synthesis. 1998;1998:1199–205.

    Article  Google Scholar 

  55. Dos Santos M, Franck X, Hocquemiller R, Figadere B, Peyrat J-F, Provot O, et al. Iron-catalyzed coupling reaction between 1, 1-dichloro-1-alkenes and grignard reagents. Synlett. 2004;2004:2697–700.

    Article  CAS  Google Scholar 

  56. Saksena AK, Girijavallabhan VM, Wang H, Liu Y-T, Pike RE, Ganguly AK. Concise asymmetric routes to 2, 2, 4-trisubstituted tetrahydrofurans via chiral titanium imide enolates: Key intermediates towards synthesis of highly active azole antifungals SCH 51048 and SCH 56592. Tetrahedron Lett. 1996;37:5657–60.

    Article  CAS  Google Scholar 

  57. Saksena AK, Girijavallabhan VM, Lovey RG, Pike RE, Wang H, Ganguly AK, et al. Highly stereoselective access to novel 2, 2, 4-trisubstituted tetrahydrofurans by halocyclization: Practical chemoenzymatic synthesis of SCH 51048, a broad-spectrum orally active antifungal agent. Tetrahedron Lett. 1995;36:1787–90.

    Article  CAS  Google Scholar 

  58. Morgan B, Dodds DR, Zaks A, Andrews DR, Klesse R. Enzymatic desymmetrization of prochiral 2-substituted-1, 3-propanediols: a practical chemoenzymatic synthesis of a key precursor of SCH51048, a broad-spectrum orally active antifungal agent. J Org Chem. 1997;62:7736–43.

    Article  CAS  Google Scholar 

  59. Morgan B, Stockwell BR, Dodds DR, Andrews DR, Sudhakar AR, Nielsen CM, et al. Chemoenzymatic approaches to SCH 56592, a new azole antifungal. J Am Oil Chemists’ Soc. 1997;74:1361–70.

    Article  CAS  Google Scholar 

  60. Ke Z, Tan CK, Chen F, Yeung Y-Y. Catalytic asymmetric bromoetherification and desymmetrization of olefinic 1, 3-diols with C 2-symmetric sulfides. J Am Chem Soc. 2014;136:5627–30.

    Article  CAS  PubMed  Google Scholar 

  61. Gao M, Zhao Y, Zhong C, Liu S, Liu P, Yin Q, et al. General [4 + 1] cyclization approach to access 2, 2-disubstituted tetrahydrofurans enabled by electrophilic bifunctional peroxides. Org Lett. 2019;21:5679–84.

  62. Hepperle M, Eckert J, Gala D, Shen L, Evans CA, Goodman A. Mono N-arylation of piperazine (III): metal-catalyzed N-arylation and its application to the novel preparations of the antifungal posaconazole and its advanced intermediate. Tetrahedron Lett. 2002;43:3359–63.

    Article  CAS  Google Scholar 

  63. Lv G, Zhang D-L, Wang D, Pan L, Liu Y. Synthesis, crystal structure, anti-bone cancer activity and molecular docking investigations of the heterocyclic compound 1-((2S, 3S)-2-(benzyloxy) pentan-3-yl)-4-(4-(4-(4-hydroxyphenyl) piperazin-1-yl) phenyl)-1H-1, 2, 4-triazol-5 (4H)-one. J Struct Chem. 2019;60:1173–9.

    Article  CAS  Google Scholar 

  64. Hoffman HL, Ernst EJ, Klepser ME. Novel triazole antifungal agents. Expert Opin Investig Drugs. 2000;9:593–605.

    Article  CAS  PubMed  Google Scholar 

  65. Kim H, Kumari P, Lin C-C, Nomeir AA. Simultaneous high-performance liquid chromatographic determination of SCH 59884 (phosphate ester prodrug of SCH 56592), SCH 207962 and SCH 56592 in dog plasma. J Pharm Biomed Anal. 2002;27:295–303.

    Article  PubMed  Google Scholar 

  66. Lee GM, Eckert J, Gala D, Schwartz M, Renton P, Pergamen E, et al. Synthesis of Injectable antifungal SCH 59884. Org Process Res Dev. 2001;5:622–9.

    Article  CAS  Google Scholar 

  67. Renton P, Gala D, Lee G. SOB as an alternate to BOB: findings from the preparation of injectable antifungal Sch 59884. Tetrahedron Lett. 2001;42:7141–3.

    Article  CAS  Google Scholar 

  68. Renton P, Shen L, Eckert J, Lee G, Gala D, Chen G, et al. An intramolecular silyl transfer from the carboxylate to the hydroxyl group in sodium 4-hydroxybutyrate and its application to the synthesis of injectable antifungal posaconazole derivative, Sch 59884. Org Process Res Dev. 2002;6:36–41.

    Article  CAS  Google Scholar 

  69. Teske KA, Dash RC, Morel SR, Chau LQ, Wechsler-Reya RJ, Hadden MK. Development of posaconazole-based analogues as hedgehog signaling pathway inhibitors. Eur J Med Chem. 2019;163:320–32.

    Article  CAS  PubMed  Google Scholar 

  70. Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17:388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doheny D, Manore SG, Wong GL, Lo H-W. Hedgehog signaling and truncated GLI1 in cancer. Cells. 2020;9:2114.

    Article  CAS  PubMed Central  Google Scholar 

  72. Quaglio D, Infante P, Di Marcotullio L, Botta B, Mori M. Hedgehog signaling pathway inhibitors: an updated patent review (2015–present). Expert Opin Ther Pat. 2020;30:235–50.

    Article  CAS  PubMed  Google Scholar 

  73. Hadden MK. Hedgehog pathway inhibitors: a patent review (2009–present). Expert Opin Ther Pat. 2013;23:345–61.

    Article  CAS  PubMed  Google Scholar 

  74. Scales SJ, de Sauvage FJ. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 2009;30:303–12.

    Article  CAS  PubMed  Google Scholar 

  75. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018;18:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fecher LA, Sharfman WH. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options–role of smoothened inhibitors. Biologics: Targets Ther. 2015;9:129.

    CAS  Google Scholar 

  77. Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro-Oncol. 2014;16:1037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen B, Trang V, Lee A, Williams NS, Wilson AN, Epstein EH, et al. Posaconazole, a second-generation triazole antifungal drug, inhibits the hedgehog signaling pathway and progression of basal cell carcinoma. Mol Cancer Ther. 2016;15:866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rodrigues-dos-Santos I, Melo MF, de Castro L, Hasslocher-Moreno AM, do Brasil PEA, Silvestre de Sousa A, et al. Exploring the parasite load and molecular diversity of Trypanosoma cruzi in patients with chronic Chagas disease from different regions of Brazil. PLoS Neglected Tropical Dis. 2018;12:e0006939.

    Article  CAS  Google Scholar 

  80. Liu Z, Ulrich vonBargen R, McCall L-I. Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis. Curr Opin Microbiol. 2021;63:204–9.

    Article  CAS  PubMed  Google Scholar 

  81. Turabelidze G, Vasudevan A, Rojas-Moreno C, Montgomery SP, Baker M, Pratt D, et al. Autochthonous Chagas disease—Missouri, 2018. Morbidity Mortal Wkly Rep. 2020;69:193.

    Article  Google Scholar 

  82. Santana KH, Oliveira LGR, Barros de Castro D, Pereira M. Epidemiology of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in the Americas: systematic review and meta-analysis. Tropical Med Int Health. 2020;25:752–63.

    Article  Google Scholar 

  83. Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov. 2019;14:1161–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mazzeti AL, Gonçalves KR, Mota SL, Pereira DE, Diniz LDF, Bahia MT. Combination therapy using nitro compounds improves the efficacy of experimental Chagas disease treatment. Parasitology. 2021;148:1320–7.

    Article  CAS  PubMed  Google Scholar 

  85. Patterson S, Fairlamb AH. Current and future prospects of nitro-compounds as drugs for trypanosomiasis and leishmaniasis. Curr Med Chem. 2019;26:4454–75.

    Article  CAS  PubMed  Google Scholar 

  86. Ribeiro V, Dias N, Paiva T, Hagström-Bex L, Nitz N, Pratesi R, et al. Current trends in the pharmacological management of Chagas disease. Int J Parasitology: Drugs Drug Resistance. 2020;12:7–17.

    Google Scholar 

  87. Keenan M, Chaplin JH. A new era for Chagas disease drug discovery? Prog Med Chem. 2015;54:185–230.

    Article  PubMed  Google Scholar 

  88. Villalta F, Dobish MC, Nde PN, Kleshchenko YY, Hargrove TY, Johnson CA, et al. VNI cures acute and chronic experimental Chagas disease. J Infect Dis. 2013;208:504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Andriani G, Amata E, Beatty J, Clements Z, Coffey BJ, Courtemanche G, et al. Antitrypanosomal lead discovery: identification of a ligand-efficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. J Med Chem. 2013;56:2556–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lepesheva GI, Hargrove TY, Rachakonda G, Wawrzak Z, Pomel S, Cojean S, et al. VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. J Infect Dis. 2015;212:1439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Monteiro M, Lechuga G, Lara L, Souto B, Viganó M, Bourguignon S, et al. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease. Eur J Med Chem. 2019;182:111610.

    Article  CAS  PubMed  Google Scholar 

  92. Diniz LDF, Urbina JA, de Andrade IM, Mazzeti AL, Martins TAF, Caldas IS, et al. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLoS Neglected Tropical Dis. 2013;7:e2367.

    Article  CAS  Google Scholar 

  93. Benaim G, Sanders JM, Garcia-Marchán Y, Colina C, Lira R, Caldera AR, et al. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem. 2006;49:892–9.

    Article  CAS  PubMed  Google Scholar 

  94. Algarabel M, Fernández-Rubio C, Musilova K, Peña-Guerrero J, Vacas A, Larrea E, et al. In Leishmania major, the homolog of the oncogene PES1 may play a critical role in parasite infectivity. Int J Mol Sci. 2021;22:12592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. de Almeida JV, de Souza CF, Fuzari AA, Joya CA, Valdivia HO, Bartholomeu DC, et al. Diagnosis and identification of Leishmania species in patients with cutaneous leishmaniasis in the state of Roraima, Brazil’s Amazon Region. Parasites Vectors. 2021;14:1–9.

    Article  CAS  Google Scholar 

  96. Borborema SET, Junior JAO, Tempone AG, de Andrade Junior HF, do Nascimento N. Pharmacokinetic of meglumine antimoniate encapsulated in phosphatidylserine-liposomes in mice model: A candidate formulation for visceral leishmaniasis. Biomed Pharmacother. 2018;103:1609–16.

    Article  CAS  PubMed  Google Scholar 

  97. Pereira MB, Sydor BG, Memare KG, Verzignassi Silveira TG, Alessi Aristides SM, Dalmarco EM, et al. In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: a systematic review. Nanomedicine. 2021;16:1505–18.

    Article  CAS  PubMed  Google Scholar 

  98. Soto JA, Berman JD. Miltefosine treatment of cutaneous leishmaniasis. Clin Infect Dis. 2021;73:e2463–e2464.

    Article  PubMed  Google Scholar 

  99. Sohail A, Khan RU, Khan M, Khokhar M, Ullah S, Ali A, et al. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull Natl Res Cent. 2021;45:1–9.

    Article  Google Scholar 

  100. Yadagiri G, Singh PP. Chemotherapy and experimental models of visceral leishmaniasis, In: Infectious Diseases and Your Health, Springer, Singapore; 2018. p. 63–97.

  101. Shafi MT, Bamra T, Das S, Kumar A, Abhishek K, Kumar M, et al. Mevalonate kinase of Leishmania donovani protects parasite against oxidative stress by modulating ergosterol biosynthesis. Microbiol Res. 2021;251:126837.

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto ES, de Jesus JA, Bezerra-Souza A, Brito JR, Lago JHG, Laurenti MD, et al. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg Chem. 2020;102:104056.

    Article  CAS  PubMed  Google Scholar 

  103. Al-Abdely HM, Graybill JR, Loebenberg D, Melby PC. Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniases. Antimicrobial Agents Chemother. 1999;43:2910–4.

    Article  CAS  Google Scholar 

  104. Emami S, Tavangar P, Keighobadi M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem. 2017;135:241–59.

    Article  CAS  PubMed  Google Scholar 

  105. de Macedo-Silva ST, Urbina JA, De Souza W, Rodrigues JCF. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. PloS ONE. 2013;8:e83247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Paniz Mondolfi A, Stavropoulos C, Gelanew T, Loucas E, Perez Alvarez A, Benaim G, et al. Successful treatment of Old World cutaneous leishmaniasis caused by Leishmania infantum with posaconazole. Antimicrobial Agents Chemother. 2011;55:1774–6.

    Article  CAS  Google Scholar 

  107. Keighobadi M, Fakhar SM, Shokri A, Mirzaei H, Hosseini Teshnizi S. Repurposing azole antifungals into antileishmanials: Novel 3-triazolylflavanones with promising in vitro antileishmanial activity against Leishmania major. Parasitol Int. 2019;69:103–9.

    Article  CAS  PubMed  Google Scholar 

  108. Shokri A, Emami S, Fakhar M, Hosseini Teshnizi S, Keighobadi M. In vitro antileishmanial activity of novel azoles (3-imidazolylflavanones) against promastigote and amastigote stages of Leishmania major. Acta Tropica. 2017;167:73–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Emami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashpour, S., Ghobadi, E. & Emami, S. Chemical and biological aspects of posaconazole as a classic antifungal agent with non-classical properties: highlighting a tetrahydrofuran-based drug toward generation of new drugs. Med Chem Res 31, 833–850 (2022). https://doi.org/10.1007/s00044-022-02901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02901-2

Keywords

Navigation