Skip to main content
Log in

Chemoenzymatic approaches to SCH 56592, a new azole antifungal

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Chemoenzymatic approaches to the synthesis of two key chiral-precursors of a new azole antifungal agent, SCH 56592, are described. In particular, the enzymatic diastereoselective acylation of 2-benzyloxy-3-pentanol (7) was developed to produce (2S;3R)-7 in >97% diastereomeric excess (de) from otherwise unusable mixtures of (2S,3R)/(2S,3S)-7 (40–80% de). The selectivity and reactivity of commercially available Candida rugosa and Mucor miehei lipases are compared for the acylation of 7 and the hydrolysis of the corresponding butyrate 16a. Of the 17 C. rugosa enzyme preparations that were examined for acylation of 7, two purified enzyme preparations showed no reactivity, five enzymes showed high diastereoselectivity with preference for the (2S,3R)-isomer, and seven showed a slight preference for the (2S,3S)-isomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saksena, A.K., V.M. Girijavallabhan, R.G. Lovey, R.E. Pike, H. Wang, Y.T. Liu, P. Pinto, F. Bennett, E. Jao, N. Patel, J.A. Desai, D.F. Rane, A.B. Cooper, and A.K. Ganguly, Advances in the Chemistry of Novel Broad-Spectrum Orally Active Azole Antifungals: Recent Studies Leading to the Discovery of SCH56592, in Antiinfectives: Recent Advances in Chemistry and Structure-Activity Relationships, edited by P.H. Bentley and P.J. O’Hanlon, Royal Society of Chemistry Information Service, London, 1997, pp. 180–199.

    Google Scholar 

  2. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, California, 17–20, September, 1995, Abstract Nos. F61–68, F83.

  3. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, edited by K. Drauz and H. Waldmann, VCH Publishers, New York, 1995.

    Google Scholar 

  4. Wong, C.-H., and G. Whitesides, Enzymes in Synthetic Organic Chemistry, Pergamon, New York, 1994.

    Google Scholar 

  5. Poppe, L., and L. Novak, Selective Biocatalysis, VCH Publishers, New York, 1992.

    Google Scholar 

  6. Preparative Biotransformations: Whole Cell and Isolated Enzymes in Organic Synthesis, edited by S.M. Roberts, K. Wiggins, G. Casy, and S. Phythian, Wiley, Chichester, 1992.

    Google Scholar 

  7. Food and Drug Administration, Food and Drug Administration Policy Statement for the Development of New Stereoisomeric Drugs, Chirality 4:338–340 (1992).

    Article  Google Scholar 

  8. Stinson, S.C., Chem. Eng. News Oct. 9, 1995; p. 44, June 2, 1997, p. 28.

  9. Lovey, R.G., A.K. Saksena, and V.M. Girijavallabhan, PPL-Catalyzed Enzymatic Asymmetrization of a 2-Substituted Prochiral 1,3-Diol with Remote Chiral Functionality: Improvements Toward Synthesis of the Eutomers of SCH 45012. Tetrahedron Lett. 35:6047–6050 (1994).

    Article  CAS  Google Scholar 

  10. Saksena, A.K., V.M. Girijavallabhan, R.G. Lovey, R.E. Pike, H. Wang, A.K. Ganguly, B. Morgan, A. Zaks, and M.S. Puar, Highly Stereoselective Access to Novel 2,2,4-Trisubstituted Tetrahydrofurans by Halocyclization: Practical Chemoenzymatic Synthesis of SCH 51048, a Broad-Spectrum Orally Active Antifungal Agent, Ibid.: 1787–1790 (1995).

    Article  CAS  Google Scholar 

  11. Saksena, A.K., V.M. Girijavallabhan, R.E. Pike, H. Wang, R.G. Lovey, Y.-T. Liu, A.K. Ganguly, W.B. Morgan, and A. Zaks, Process for Preparing Intermediates for the Synthesis of Antifungal Agents, U.S. Patent 5,403,937 (1995).

  12. Morgan, B., D.R. Dodds, A. Zaks, D.R. Andrews, and R. Klesse, Enzymatic Desymmetrization of Prochiral 2-Substituted-1,3-Propanediols: A Practical Chemoenzymatic Synthesis of a Key Precursor of SCH 51048, a Broad-Spectrum Orally Active Azole Antifungal Agent, J. Org. Chem., in press.

  13. Terao, Y., K. Tsuji, M. Murata, K. Achiwa, T. Nishio, N. Watanabe, and K. Seto, Facile Process for Enzymic Resolution, Chem. Pharm. Bull. 37:1653–1654 (1989).

    CAS  Google Scholar 

  14. Fiaud, J.-C., R. Gil, J.-Y. Legros, L. Aribi-Zouioueche, and W.A. Konig, Kinetic Resolution of 3-tButyl and 3-Phenyl Cyclobutylidenethanols Through Lipase-Catalyzed Acylation with Succinic Anhydride, Tetrahedron Lett. 33:6967–6970 (1992).

    Article  CAS  Google Scholar 

  15. Gutman, A., D. Brenner, and A. Boltanski, Convenient Practical Resolution of Racemic Alkyl-Aryl Alcohols via Enzymatic Acylation with Succinic Anhydride in Organic Solvents, Tetrahedron: Asymm. 4:839–844 (1993).

    Article  CAS  Google Scholar 

  16. Hyatt, J.A., and C. Skelton, A Kinetic Resolution Route to the (S)-Chromanmethanol Intermediate for Synthesis of the Natural Tocols, Ibid.:523–526 (1997).

    Article  CAS  Google Scholar 

  17. Yamamoto, K., T. Nishioka, and J. Oda, Asymmetric Ring Opening of Cyclic Acid Anhydrides with Lipase in Organic Solvents, Tetrahedron Lett. 29:1717–1720 (1988).

    Article  CAS  Google Scholar 

  18. Ozegowski, R., A. Kunath, and H. Schick, Lipase-Catalyzed Asymmetric Alcoholysis of 3-Substituted Pentanedioic Anhydrides, Liebigs Ann. Chem.:805–808 (1993).

  19. Wang, Y.-F., J.J. Lalonde, M. Momongan, D.E. Bergbreiter, and C.-H. Wong, Lipase-Catalyzed Irreversible Transesterifications Using Enol Esters as Acylating Reagents: Preparative Enantioand Regioselective Syntheses of Alcohols, Glycerol Derivatives, Sugars, and Organometallies, J. Am. Chem. Soc. 110:7200–7205 (1988).

    Article  CAS  Google Scholar 

  20. Sonnett, P.E., Kinetic Resolution of Aliphatic Alcohols with a Fungal Lipase from Mucor miehei, J. Org. Chem. 52:3477–3479 (1987).

    Article  Google Scholar 

  21. Weber, H.K., H. Stecher, and K. Faber, Sensitivity of Microbial Lipases to Acetaldehyde Formed by Acyl-Transfer Reactions from Vinyl Esters, Biotechnol. Lett. 17:803–808 (1995).

    Article  CAS  Google Scholar 

  22. Guo, Z.-W., and C.J. Sih, Enantioselective Inhibition: A Strategy for Improving the Enantioselectivity of Biocatalytic Systems, J. Am. Chem. Soc. 111:6836–6841 (1989).

    Article  CAS  Google Scholar 

  23. Kawaguchi, Y., and H. Honda, The Structure of Lipase Genes and Pseudogenes of Candida cylindracea, in Lipases: Structure, Mechanism and Genetic Engineering, edited by L. Alberghina, R.D. Schmid, and R. Verger, VCH, New York, 1991, pp. 221–230.

    Google Scholar 

  24. Sanchez-Montero, J.M., V. Hamon, D. Thomas, and M.D. Legoy, Modulation of Lipase Hydrolysis and Synthesis Reactions Using Carbohydrates, Biochim. Biophys. Acta 1078:345–350 (1991).

    PubMed  CAS  Google Scholar 

  25. Lundh, M., O. Smitt, and E. Hedenstrom, Sex Pheromone of Pine Sawflies: Enantioselective Lipase Catalysed Transesterification of Erythro-3,7-Dimethylpentadecan-2-o1, Diprionol, Tetrahedron: Asymm. 7:3277–3284 (1996).

    Article  CAS  Google Scholar 

  26. Perischetti, R.A., J.J. Lalonde, C.P. Govardhan, N.K. Khalaf, and A.L. Margolin, Candida rugosa Lipase: Enantioselectivity Enhancements in Organic Solvents, Tetrahedron Lett. 37:6507–6510 (1996).

    Article  Google Scholar 

  27. Tsai, S.-W., and J.S. Dordick, Extraordinary Enantiospecificity of Lipase Catalysis in Organic Media Induced by Purification and Catalyst Engineering, Biotechnol. Bioeng. 52:296–300 (1996).

    Article  CAS  Google Scholar 

  28. Kazlauskas, R.J., A.N.E. Weissfloch, A.V. Rappaport, and L.A. Cuccia, A Rule to Predict Which Enantiomer of a Secondary Alcohol Reacts Faster in Reactions Catalyzed by Cholesterol Esterase, Lipase from Pseudomonas cepacia, and Lipase from Candida rugosa, J. Org. Chem. 56:2656–2665 (1991).

    Article  CAS  Google Scholar 

  29. Franssen, M.C.R., H. Jongejan, H. Kooijman, A.L. Spek, N.L.F.L. Camacho Mondril, P.M.A.C. Boavida dos Santos, and A. de Groot, Resolution of a Tetrahydrofuran Ester by Candida rugosa Lipase (CRL) and an Examination of CRL’s Stereochemical Preference in Organic Media, Tetrahedron: Asymm. 7:497–510 (1996).

    Article  CAS  Google Scholar 

  30. Cygler, M., P. Grochulski, R.J. Kazlauskas, J.P. Schrag, F. Bouthillier, F.B. Rubin, A.N. Serreqi, and A.K. Gupta, A Structural Basis for the Chiral Preferences of Lipases, J. Am. Chem. Soc. 116:3180–3186 (1994).

    Article  CAS  Google Scholar 

  31. Wu, S.-H., Z.-W. Guo, and C.J. Sih, Enhancing the Enantioselectivity of Candida Lipase Catalyzed Ester Hydrolysis via Noncovalent Enzyme Modification, Ibid.:1990–1995 (1990).

    Article  CAS  Google Scholar 

  32. Allenmark, S., and A. Ohlsson, Studies of the Heterogeneity of a Candida cylindracea (rugosa) Lipase: Monitoring of Esterolytic Activity and Enantioselectivity by Chiral Liquid Chromatography, Biocatalysis 6:211–221 (1992).

    CAS  Google Scholar 

  33. Rua, M.L., T. Diaz-Maurino, V.M. Fernandez, C. Otero, and A. Ballesteros, A Purification and Characterization of Two Distinct Lipases from Candida cylindracea, Biochim. Biophys. Acta 1156:181–189 (1993).

    PubMed  CAS  Google Scholar 

  34. Guo, Z.-W., and C.J. Sih, Enantioselective Inhibition: A Strategy for Improving the Enantioselectivity of Biocatalytic Systems, J. Am. Chem. Soc., 111:6836–6841 (1989).

    Article  CAS  Google Scholar 

  35. Lalonde, J.J., C. Govardhan, N. Khalaf, K.V. Martinez, and A.L. Margolin, Cross-Linked Enzyme Crystals of Candida rugosa Lipase: Highly Efficient Catalysts for the Resolution of Chiral Esters, Ibid.:6845–6852 (1995).

    Article  CAS  Google Scholar 

  36. Colton, I.J., S.N. Ahmed, and R.J. Kazlauskas, A 2-Propanol Treatment Increases the Enantioselectivity of Candida rugosa Lipase Towards Esters of Chiral Carboxylic Acids, J. Org. Chem. 60:212–217 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Morgan.

About this article

Cite this article

Morgan, B., Stockwell, B.R., Dodds, D.R. et al. Chemoenzymatic approaches to SCH 56592, a new azole antifungal. J Amer Oil Chem Soc 74, 1361–1370 (1997). https://doi.org/10.1007/s11746-997-0238-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-997-0238-2

Key words

Navigation