Skip to main content
Log in

Novel norsufentanil analogues containing triazole ring; synthesis, radioligand binding assay, and pharmacological evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 12 novel triazoles containing derivatives of norsufentanil were put into synthesis having the construction of the alkynyl group on norsufentanil followed by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Every single one of the synthesized compounds was evaluated through radioligand binding experiments. The compounds with the best affinities in the in vitro studies were selected to be investigated for their anti-nociceptive activity by way of tail flick test. Compounds 3h and 3i (Ki = 0.55 nM; IC50 = 1.25 nM and, Ki = 0.83 nM; IC50 = 1.87 nM, respectively) displayed the best affinities compared to that of sufentanil’s (Ki = 0.70 nM; IC50 = 1.59 nM). 3h put on display the highest potency (ED50 = 4.21 µg/kg) for tail flick test amongst the entire selected compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Guimarães AG, Quintans JSS, Quintans-Júnior LJ. Monoterpenes with analgesic activity—a systematic review. Phytother Res. 2013;27:1–15. https://doi.org/10.1002/ptr.4686.

    Article  CAS  PubMed  Google Scholar 

  2. Almeida RN, Almeida RN, Navarro DS, Barbosa-Filho JM. Plants with central analgesic activity. Phytomedicine. 2001;8:310–22.

    Article  CAS  Google Scholar 

  3. Okuse K. Pain signalling pathways: from cytokines to ion channels. Int J Biochem Cell Biol. 2007;39:490–6. https://doi.org/10.1016/j.biocel.2006.11.016.

    Article  CAS  PubMed  Google Scholar 

  4. Leleszi JP, Lewandowski JG. Pain management in end-of-life care. J Am Osteopath Assoc. 2005;105:6S–11S.

    Google Scholar 

  5. Lipiński PF, Kosson P, Matalińska J, Roszkowski P, Czarnocki Z, Jarończyk M, et al. Fentanyl family at the mu-opioid receptor: uniform assessment of binding and computational analysis. Molecules. 2019;24:740.

    Article  Google Scholar 

  6. Monk JP, Beresford R, Ward A. Sufentanil. Drugs. 1988;36:286–313. https://doi.org/10.2165/00003495-198836030-00003.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmadiani A, Fereidoni M, Semnanian S, Kamalinejad M, Saremi S. Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J Ethnopharmacol. 1998;61:229–35.

    Article  CAS  Google Scholar 

  8. Prabhu VV, Nalini G, Chidambaranathan N, Kisan SS. Evaluation of antiinflammatory and analgesic activity of Tridax procumbens Linn. against formalin, acetic acid and CFA induced pain models. Int J Pharm Pharm Sci. 2011;3:126–30.

    Google Scholar 

  9. Khanage SG, Raju A, Mohite PB, Pandhare RB. Analgesic activity of some 1, 2, 4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. Adv Pharm Bull. 2013;3:13.

    Google Scholar 

  10. Stanley TH. The history and development of the fentanyl series. J Pain Symptom Manag. 1992;7:S3–S7. https://doi.org/10.1016/0885-3924(92)90047-L.

    Article  CAS  Google Scholar 

  11. Mićović IV, Ivanović MD, Vuckovic SM, Prostran MŠ, Došen-Mićović L, Kiricojević VD. The Synthesis and preliminary pharmacological evaluation of 4-Methyl fentanyl. Bioorg Med Chem Lett. 2000;10:2011–4. https://doi.org/10.1016/S0960-894X(00)00394-2.

    Article  PubMed  Google Scholar 

  12. Yadav P, Chauhan J, Ganesan K, Gupta P, Chauhan D, Gokulan PD. Synthetic methodology and structure activity relationship study of N-[1-(2-phenylethyl)-piperidin-4-yl]-propionamides. Pharm Sinica. 2010;1:126–39.

    CAS  Google Scholar 

  13. Janssen PA. The development of new synthetic narcotics. Opioids in Anesthesia. Butterworth, Boston. 1984:37–44.

  14. Vardanyan RS, Hruby VJ. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med Chem. 2014;6:385–412.

    Article  CAS  Google Scholar 

  15. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. Clin Pharmacokinet. 1996;31:275–92. https://doi.org/10.2165/00003088-199631040-00004.

    Article  CAS  PubMed  Google Scholar 

  16. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet. 1996;31:275–92. https://doi.org/10.2165/00003088-199631040-00004.

    Article  CAS  PubMed  Google Scholar 

  17. Oh SK, Lee IO, Lim BG, Jeong H, Kim YS, Ji SG. et al. Comparison of the analgesic effect of sufentanil versus fentanyl in intravenous patient-controlled analgesia after total laparoscopic hysterectomy: a randomized, double-blind, prospective study. Int J Med Sci. 2019;16:1439–46. https://doi.org/10.7150/ijms.34656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nami M, Salehi P, Dabiri M, Bararjanian M, Gharaghani S, Khoramjouy M, et al. Synthesis of novel norsufentanil analogs via a four‐component Ugi reaction and in vivo, docking, and QSAR studies of their analgesic activity. Chem Biol Drug Des. 2018;91:902–14.

    Article  CAS  Google Scholar 

  19. White PF, Coe V, Shafer A, Sung M-L. Comparison of alfentanil with fentanyl for outpatient anesthesia. Anesthesiology: J Am Soc Anesthesiologists. 1986;64:99–105.

    Article  CAS  Google Scholar 

  20. Lalinde N, Moliterni J, Wright D, Spencer HK, Ossipov MH, Spaulding TC. et al. Synthesis and pharmacological evaluation of a series of new 1,4-disubstituted 3-methyl-piperidine analgesics. J Med Chem. 1990;33:2876–82. https://doi.org/10.1021/jm00172a032.

    Article  CAS  PubMed  Google Scholar 

  21. Kvalo LT, Wilhelm JA, Edfort MJ, Venturella VS. Determination of [3H]brifentanil, a potent narcotic analgesic, from rat serum by high-performance liquid chromatography with on-line radioactive detection. J Chromatogr B Biomed Appl. 1991;565:391–9. https://doi.org/10.1016/0378-4347(91)80400-7.

    Article  CAS  Google Scholar 

  22. Egan TD. Section review: central and peripheral nervous system: new intravenous opioids. Expert Opin Investigational Drugs. 1994;3:997–1003. https://doi.org/10.1517/13543784.3.10.997.

    Article  CAS  Google Scholar 

  23. Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem. 2020;11:327–48. https://doi.org/10.1039/C9MD00458K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today. 2017;22:1572–81.

    Article  CAS  Google Scholar 

  25. Guan L-P, Jin Q-H, Tian G-R, Chai K-Y, Quan Z-S. Synthesis of some quinoline-2 (1H)-one and 1, 2, 4-triazolo [4, 3-a] quinoline derivatives as potent anticonvulsants. J Pharm Pharm Sci. 2007;10:254–62.

    CAS  PubMed  Google Scholar 

  26. Chiu SH, Huskey SW. Species differences in N-glucuronidation. Drug Metab Disposition: Biol Fate Chem. 1998;26:838–47.

    CAS  Google Scholar 

  27. Kashyap A, Silakari O Chapter 9 - Triazoles: Multidimensional 5-Membered Nucleus for Designing Multitargeting Agents. In: Silakari O, editor. Key Heterocycle Cores for Designing Multitargeting Molecules. Elsevier; 2018. p. 323–42.

  28. Prasad AR, Ramalingam T, Rao AB, Diwan PV, Sattur PB. Synthesis and biological evaluation of 3-aryloxyalkyl-6-aryl-7H-s-triazolo[3,4-b][1,3,4]thiadiazines. Eur J Med Chem. 1989;24:199–201. https://doi.org/10.1016/0223-5234(89)90116-5.

    Article  CAS  Google Scholar 

  29. el-Emam AA, Ibrahim TM. Synthesis and anti-inflammatory and analgesic activity of some 3-(1-adamantyl)-4-substituted-5-mercapto-1,2,4-triazoles. Arzneim-Forsch. 1991;41:1260–4.

    CAS  Google Scholar 

  30. Hussein MA, Shaker RM, Ameen MA, Mohammed MF. Synthesis, anti-inflammatory, analgesic, and antibacterial activities of some triazole, triazolothiadiazole, and triazolothiadiazine derivatives. Arch Pharm Res. 2011;34:1239. https://doi.org/10.1007/s12272-011-0802-z.

    Article  CAS  PubMed  Google Scholar 

  31. Saad HA, Osman NA, Moustafa AH. Synthesis and analgesic activity of some new pyrazoles and triazoles bearing a 6, 8-dibromo-2-methylquinazoline moiety. Molecules. 2011;16:10187–201.

    Article  CAS  Google Scholar 

  32. Srimurugan S, Murugan K, Chen C. A facile method for preparation of [2H3]-sufentanil and its metabolites. Chem Pharm Bull. 2009;57:1421–4.

    Article  CAS  Google Scholar 

  33. Unterwald E, Anton B, To T, Lam H, Evans C. Quantitative immunolocalization of mu opioid receptors: regulation by naltrexone. Neurosci. 1998;85:897–905.

    Article  CAS  Google Scholar 

  34. Poisnel G, Quentin T, Barré L, Coquerel A, Debruyne D. Competitive displacement binding assay on rat brain sections and using a β-imager: application to μ-opioid ligands. J Neurosci Methods. 2006;154:60–7.

    Article  CAS  Google Scholar 

  35. Motulsky H. The GraphPad guide to analyzing radioligand binding data. GraphPad Software, Inc. 1996:1–19.

  36. Khoramjouy M, Ahmadi F, Faizi M, Shahhosseini S. Optimization binding studies of opioid receptors, saturation and competition, using [3 H]-DAMGO. Pharmacol Rep. 2021;73:1390–5.

    Article  CAS  Google Scholar 

  37. D’AMOUR FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74–9.

    Google Scholar 

  38. Gharehnaghadeh S, Salehi P, Bararjanian M, Pecio Ł, Babanezhad‐Harikandei K, Khoramjouy M, et al. Novel triazole‐tethered derivatives of nor‐codeine: synthesis, radioligand binding assay, docking study and evaluation of their analgesic properties. ChemistrySelect. 2020;5:14753–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support of Research and Technology Council of Shahid Beheshti University and Deputy of Research, Shahid Beheshti University of Medical Sciences for grant No. 313/329.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Peyman Salehi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nami, M., Salehi, P., Bararjanian, M. et al. Novel norsufentanil analogues containing triazole ring; synthesis, radioligand binding assay, and pharmacological evaluation. Med Chem Res 31, 886–893 (2022). https://doi.org/10.1007/s00044-022-02874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02874-2

Keywords

Navigation