Skip to main content
Log in

Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-quinolinyl-pentanamides as selective dopamine D3 receptor ligands

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Dopamine (1) plays a key role in normal physiological pathways in both the central nervous system and the periphery. The physiological impact of this neurotransmitter is mediated through its interaction with family of G-protein-coupled receptors (GPCRs). These receptors are designated as D1, D2, D3, D4, and D5 and divided into two sub-families, the D1-like sub-family (D1 and D5) and D2-like sub-family (D2, D3 and D4) based on pharmacological properties, amino acid homology, and genetic organization. Aberrant D3 activity has been linked to multiple diseases and conditions such as depression, schizophrenia, substance use disorder, inflammatory diseases, and Parkinson’s disease (PD). As part of our on-going program focused on the identification of novel D3 ligands, we have identified a novel series of 5-(4-arylpiperazin-1-yl)-N-quinolinyl-pentanamides that are high affinity ligands for this receptor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord 2008;23:S497–508. https://doi.org/10.1002/mds.22028.

    Article  PubMed  Google Scholar 

  2. Björklund A, Dunnett SB. Fifty years of dopamine research. Trends Neurosci. 2007;30:185–7. https://doi.org/10.1016/j.tins.2007.03.004.

    Article  PubMed  Google Scholar 

  3. Benes FM. Carlsson and the discovery of dopamine. Trends Pharmacol Sci 2001;22:46–47. https://doi.org/10.1016/S0165-6147(00)01607-2.

    Article  CAS  PubMed  Google Scholar 

  4. Jaber M, Robinson SW, Missale C, Caron MG. Dopamine receptors and brain function. Neuropharm. 1996;35:1503–19. https://doi.org/10.1016/s0028-3908(96)00100-1.

    Article  CAS  Google Scholar 

  5. Roeper J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci. 2013;36:336–42.

    Article  CAS  PubMed  Google Scholar 

  6. Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, et al. Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS dDisorders. Biomolecules. 2021;11:104. https://doi.org/10.3390/biom11010104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng Y, Lu Y. Immunomodulatory effects of dopamine in inflammatory diseases. Front Immunol. 2021;12:663102–0. https://doi.org/10.3389/fimmu.2021.663102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bono F, Mutti V, Fiorentini C, Missale C. Dopamine D3 receptor heteromerization: implications for neuroplasticity and neuroprotection. Biomolecules. 2020;10:1016. https://doi.org/10.3390/biom10071016.

    Article  CAS  PubMed Central  Google Scholar 

  9. Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: a neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev. 2020;57:100994. https://doi.org/10.1016/j.arr.2019.100994.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar A, Singh H, Mishra A, Mishra AK. Aripiprazole: an FDA approved bioactive compound to treat Schizophrenia- a mini review. Curr Drug Discov Technol. 2020;17:23–29. https://doi.org/10.2174/1570163815666181008151718.

    Article  CAS  PubMed  Google Scholar 

  11. Chopko TC, Lindsley CW. Classics in chemical neuroscience: risperidone. ACS Chem Neurosci. 2018;9:1520–9. https://doi.org/10.1021/acschemneuro.8b00159.

    Article  CAS  PubMed  Google Scholar 

  12. Tyler MW, Zaldivar-Diez J, Haggarty SJ. Classics in chemical neuroscience: haloperidol. ACS Chem Neurosci. 2017;8:444–53. https://doi.org/10.1021/acschemneuro.7b00018.

    Article  CAS  PubMed  Google Scholar 

  13. Smyj R, Wang XP, Han F. Pimozide, profiles of drug substances. Excip, Relat Methodol. 2012;37:287–311. https://doi.org/10.1016/B978-0-12-397220-0.00007-6.

    Article  CAS  Google Scholar 

  14. Gupta S, Masand P. Aripiprazole: review of its pharmacology and therapeutic use in psychiatric disorders. Ann Clin psychiatry. 2004;16:155–66. https://doi.org/10.1080/10401230490487007.

    Article  PubMed  Google Scholar 

  15. Ross MS, Moldofsky H. A comparison of pimozide and haloperidol in the treatment of Gilles de la Tourette’s syndrome. Am J psychiatry. 1978;135:585–7. https://doi.org/10.1176/ajp.135.5.585.

    Article  CAS  PubMed  Google Scholar 

  16. Caicedo C, Williams SH. Risperidone improves behavior in children with autism. The J Fam Pract. 2002;51:915. https://doi.org/10.1007/s10803-006-0234-7

    Article  PubMed  Google Scholar 

  17. Calne DB, Claveria LE, Teychenne PF, Haskayne L, Lodge-Patch IC. Pimozide in tardive dyskinesia. Trans Am Neurological Assoc. 1974;99:166–70.

    CAS  Google Scholar 

  18. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010;330:1091–5. https://doi.org/10.1126/science.1197410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayatshahi HS, Xu K, Griffin SA, Taylor M, Mach RH, Liu J, et al. Analogues of arylamide phenylpiperazine ligands to investigate the factors influencing D3 dopamine receptor bitropic binding and receptor subtype selectivity. ACS Chem Neurosci. 2018;9:2972–2983. https://doi.org/10.1021/acschemneuro.8b00142.

    Article  CAS  PubMed  Google Scholar 

  20. Millan MJ, Loiseau F, Dekeyne A, Gobert A, Flik G, Cremers TI. et al. S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects. J Pharmacol Exp Ther. 2008;324:1212–26.

  21. Hahn FE, Gottlieb D, Shaw PD, Corcoran JW. Chloroquine (Resochin). Antibiotics. 1975;3:58–78. https://doi.org/10.1007/978-3-642-46304-4_6.

    Article  CAS  Google Scholar 

  22. Kajinami K, Takekoshi N, Saito Y. Pitavastatin: efficacy and safety profiles of a novel synthetic HMG- CoA reductase inhibitor. Cardiovascular Drug Rev. 2003;21:199–215. https://doi.org/10.1111/j.1527-3466.2003.tb00116.x

    Article  CAS  Google Scholar 

  23. Khoshnood S, Goudarzi M, Taki E, Darbandi A, Kouhsari E, Heidary M, et al. Bedaquiline: current status and future perspectives. J G Antimicrob Resist. 2021;25:48–59. https://doi.org/10.1016/j.jgar.2021.02.017.

    Article  Google Scholar 

  24. You DM, Pockros PJ. Simeprevir for the treatment of chronic hepatitis C. Expert Opin Pharmacother. 2013;14:2581–9. https://doi.org/10.1517/14656566.2013.850074.

    Article  CAS  PubMed  Google Scholar 

  25. Chen PJ, Taylor M, Griffin SA, Amani A, Hayatshahi H, Korzekwa K, et al. Design, synthesis, and evaluation of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamides as selective dopamine D3 receptor ligands. Bioorg Med Chem Lett. 2019;29:2690–4. https://doi.org/10.1016/j.bmcl.2019.07.020.

    Article  CAS  PubMed  Google Scholar 

  26. Blass BE, Chen PJ, Taylor M, Griffin SA, Gordon JC, Luedtke RR, Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-arylpentanamides as selective dopamine D3 receptor ligands, Medicinal Chemistry Research, 2021, https://doi.org/10.1007/s00044-021-02825-3.

  27. Zhou Y, Cao C, He L, Wang X, Zhang XC. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. Elife. 2019;8:e48822. https://doi.org/10.7554/eLife.48822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McMasters DR, Torres RA, Crathern SJ, Dooney D, Nachbar RB, Sheridan RP, et al. Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem. 2007;50:3205–13. https://doi.org/10.1021/jm0700060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang J, Jamei M, Yeo KR, Rostami-Hodjegan A, Tucker GT. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos 2007;35:501–2. https://doi.org/10.1124/dmd.106.013359.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by the National Institute on Drug Abuse (NIDA)/National Institutes of Health (NIH) under award number 2R01DA023957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin E. Blass.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blass, B.E., Chen, PJ., Taylor, M. et al. Design, synthesis, and evaluation of functionalized 5-(4-arylpiperazin-1-yl)-N-quinolinyl-pentanamides as selective dopamine D3 receptor ligands. Med Chem Res 31, 749–761 (2022). https://doi.org/10.1007/s00044-022-02873-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02873-3

Keywords:

Navigation