Skip to main content
Log in

Design and synthesis of potential fungicidal compounds derived from natural products, (-)-menthol and (-)-borneol

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Twelve Novel compounds derived from (-)-menthol and (-)-borneol were designed, synthesized, and characterized by 1H NMR, 13C NMR, and HRMS. The fungicidal activities of these novel compounds against Botrytis cinerea, Curvularia lunata, and Alternaria alternata were evaluated. The results indicated that (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-(4-((2,4-difluorophenyl)sulfonyl)piperazin-1-yl)-4-oxobutanoate (6d) displayed potential fungicidal activities against B. cinerea and C. lunata. Especially, 6d exhibited IC50 value of 22.9 mg/L against C. lunata, which has higher fungicidal activity than commercial product hymexazol and amicarthiazol. In addition, the superficial structure–activity relationship was discussed. This study may provide a structural template for the design of novel fungicides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430–9.

    Article  Google Scholar 

  2. Yin XD, Ma KY, Wang YL, Sun Y, Shang XF, Zhao ZM, et al. Design, synthesis, and antifungal evaluation of 8-hydroxyquinoline metal complexes against phytopathogenic fungi. J Agric Food Chem. 2020;68:11096–104.

    Article  CAS  Google Scholar 

  3. Brase S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev. 2009;109:3903–90.

    Article  CAS  Google Scholar 

  4. Ueno Y. Toxicological features of T-2 toxin and related trichothecenes. Fundam Appl Toxicol. 1984;4:S124–132.

    Article  CAS  Google Scholar 

  5. Davey JF, Gregory NF, Mulrooney RP, Evans TA, Carroll RB. First report of mefenoxam-resistant isolates of Phytophthora capsici from lima bean pods in the Mid-Atlantic region. Plant Dis. 2008;92:656.

    Article  CAS  Google Scholar 

  6. Keinath AP. Sensitivity of populations of Phytophthora capsici from South Carolina to mefenoxam, dimethomorph, zoxamide, and cymoxanil. Plant Dis. 2007;91:743–8.

    Article  CAS  Google Scholar 

  7. Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology. 2007;97:421–8.

    Article  CAS  Google Scholar 

  8. Ram D, Ram M, Singh R. Optimization of water and nitrogen application to menthol mint (Mentha arvensis L.) through sugarcane trash mulch in a sandy loam soil of semi-arid subtropical climate. Bioresource Technol. 2006;97:886–93.

    Article  CAS  Google Scholar 

  9. Wang Y, Shi L, Wang A, Tian H, Wang H, Zo C. Preparation of high-purity (–)-borneol and xanthoxylin from leaves of Blumea balsamifera (L.) DC. Sep Sci Technol. 2014;49:1535–40.

    Article  CAS  Google Scholar 

  10. Choi HY, Kim BM, Morgan AMA, Kim JS, Kim W. Improvement of the pharmacological activity of menthol via enzymatic β-anomer-selective glycosylation. AMB Express. 2017;7:167.

    Article  Google Scholar 

  11. Schfer D, Schfer W. Pharmacological studies with an ointment containing menthol, camphene and essential oils for broncholytic and secretolytic effects. Arzneimittel Forsch. 1981;31:82–6.

    Google Scholar 

  12. Pritchard WS, Houlihan ME, Guy TD, Robinson JH. Little evidence that “denicotinized” menthol cigarettes have pharmacological effects: an EEG/heart-rate/subjective-response study. Psychopharmacology. 1999;143:273–9.

    Article  CAS  Google Scholar 

  13. Silva ATM, Pereira VV, Almeida LTGD, Ruiz ALTG, de Carvalho JE, Dias DF. Synthesis and biological activity of borneol esters. Rev Virtual Quim. 2016;8:1020–31.

    Google Scholar 

  14. Vasconcelos RM, Leite FC, Leite JA, Mascarenhas SR, Rodrigues LC, Piuvezam MR. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative. Immunopharmacol Immunotoxicol. 2012;34:1028–38.

    Article  CAS  Google Scholar 

  15. Šala M, De Palma AM, Hȓebabecký H, Nencka R, Dračínsky’ M, Leyssen P, et al. Design, synthesis, and biological evaluation of novel coxsackievirus B3 inhibitors. Bioorg Med Chem. 2010;18:4374–84.

    Article  Google Scholar 

  16. Moleyar V, Narasimham P. Antifungal activity of some essential oil components. Food Microbiol. 1986;3:331–6.

    Article  CAS  Google Scholar 

  17. Osawa K, Saeki T, Yasuda H, Hamashima H, Sasatsu M, Arai T. The antibacterial activities of peppermint oil and green tea polyphenols, alone and in combination, against Enterohemorrhagic Escherichia coil. Biocontrol Sci. 1999;4:1–7.

    Article  CAS  Google Scholar 

  18. Sun X, Qian Z, Luo L, Yuan Q, Guo X, Tao L, et al. Antibacterial adhesion of poly(methyl methacrylate) modified by borneol acrylate. Acs App Mater Inter. 2016;8:28522–8.

    Article  CAS  Google Scholar 

  19. Luo L, Li G, Luan D, Yuan Q, Wei Y, Wang X. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry. Acs App Mater Inter. 2014;6:19371–7.

    Article  CAS  Google Scholar 

  20. Shi B, Luan D, Wang S, Zhao L, Tao L, Yuan Q. Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. Rsc Adv. 2015;5:51947–52.

    Article  CAS  Google Scholar 

  21. Li G, Zhao H, Hong J, Quan K, Yuan Q, Wang X. Antifungal graphene oxide-borneol composite. Colloid Surface B. 2017;160:220–7.

    Article  CAS  Google Scholar 

  22. Li X, Ji M, Qi Z, Li X, Shen Y, Gu Z, et al. Synthesis of 2-amino-6-oxocyclohexenyl- sulfonamides and their activity against Botrytis cinerea. Pest Manag Sci. 2011;67:986–92.

    Article  CAS  Google Scholar 

  23. Li X, Yang X, Liang X, Kai Z, Yuan H, Yuan D, et al. Synthesis and biological activities of 2-oxocycloalkylsulfonamides. Bioorg Med Chem. 2008;16:4538–44.

    Article  CAS  Google Scholar 

  24. Jabusch TW, Tjeerdema RS. Partitioning of penoxsulam, a new sulfonamide herbicide. J Agric Food Chem. 2005;53:7179–83.

    Article  CAS  Google Scholar 

  25. Fontaine S, Remuson F, Caddoux L, Barrès B. Investigation of the sensitivity of Plasmopara viticola to amisulbrom and ametoctradin in French vineyards using bioassays and molecular tools. Pest Manag Sci. 2019;75:2115–23.

    CAS  PubMed  Google Scholar 

  26. Cai N, Liu C, Feng Z, Li X, Qi Z, Ji M, et al. Design, synthesis, and SAR of novel 2-glycinamide cyclohexyl sulfonamide derivatives against Botrytis cinerea. Molecules. 2018;23:740.

    Article  Google Scholar 

  27. Tanaka S, Kochi SI, Kunita H, Ito S, Kameya-Iwaki M. Biological mode of action of the fungicide, flusulfamide, against Plasmodiophora brassicae (clubroot). Eur J Plant Pathol. 1999;105:577–84.

    Article  CAS  Google Scholar 

  28. Huang D, Liao M, Zhang T, You S, Zhou Y, Cheng Y. Design, synthesis and fungicidal activity of novel 2-aryl-thiazole derivatives containing saccharin motif. Chemistry Select. 2020;5:13179–82.

    CAS  Google Scholar 

  29. Chattapadhyay TK, Dureja P. Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones. J Agric Food Chem. 2006;54:2129–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DH thanks Dr. Stephan Handschuh-Wang for the language polishing.

Funding

This work was financially supported by Shenzhen University Top Ranking Project (86000000210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danling Huang or Yong-Xian Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zheng, S., You, S. et al. Design and synthesis of potential fungicidal compounds derived from natural products, (-)-menthol and (-)-borneol. Med Chem Res 31, 307–315 (2022). https://doi.org/10.1007/s00044-021-02844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02844-0

Keywords

Navigation