Skip to main content

Advertisement

Log in

Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticancer drugs that inhibit human RNR, however, problems with toxicity and cancer resistance remain challenging. Herein we report a convenient synthesis of six novel nucleoside analogues modified with benzenesulfonamide derivatives: 4-carboxybenzenesulfonamide, 4-chloro-3-sulfamoylbenzoic acid, 2-chloro-4-fluoro-5-sulfamoylbenzoic acid, 2,3-dimethoxy-5-sulfamoylbenzoic acid, N-benzyl-4-chloro-5-sulfamoylanthranilic acid, or furosemide. Mitsunobu reaction between the carboxyl group of benzoic acid sulfonamides and the 5′ hydroxyl of uridine produced uridyl sulfamoylbenzoates with excellent yields. Molecular docking was performed to examine conformation and binding affinity with the large subunit M1 of RNR. The sulfamoyl moiety has shown strong H-bonding with known substrate-binding residues such as Ser202 and Thr607 in the catalytic site. The electron-withdrawing fluorine and chlorine enhanced binding, whereas the electron-donating methoxy group diminished binding. In silico ADMET evaluations showed favorable pharmacological and toxicity profiles with excellent solubility scores of at least −3.0 log S. Hence, we propose sulfamoylbenzoate nucleosides enhanced with electron-withdrawing groups as potential RNR inhibitors and are worth further investigation as RNR‐targeted anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greene BL, Kang G, Chang C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide reductases (RNRs): structure, chemistry, and metabolism suggest new therapeutic targets. Annu Rev Biochem. 2020;89:45–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Knighton LE, Delgado LE, Truman AW. Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet. 2019;65:477–82.

    Article  CAS  PubMed  Google Scholar 

  3. Brown NC, Reichard P. Ribonucleoside diphosphate reductase: formation of active and inactive complexes of proteins B1 and B2. J. Mol. Biol. 1969;46:39–55.

    Article  CAS  PubMed  Google Scholar 

  4. Cotruvo JA, Stubbe JA. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem. 2011;80:733–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cerqueira NMFSA, Ramos MJ. Ribonucleotide reductase: A critical enzyme for cancer chemotherapy and antiviral agents. Recent Pat Anti-Cancer Drug Discov. 2007;2:11–29.

    Article  CAS  Google Scholar 

  6. Zhou B, Su L, Hu S, Hu W, Yip MLR, Wu J, et al. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance. Cancer Res. 2013;73:6484–93.

    Article  CAS  PubMed  Google Scholar 

  7. Misko TA, Liu Y, Harris ME, Oleinick NL, Pink J, Lee H, et al. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. J Enzyme Inhib Med Chem 2019;34:438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ando N, Li H, Brignole EJ, Thompson S, McLaughlin M, Page JE, et al. Allosteric inhibition of human ribonucleotide reductase by dATP entails the stabilization of a hexamer. Biochemistry. 2016;55:373–81.

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Faber C, Uchiki T, Racca J, Dealwis C. Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proc Natl Acad Sci 2006;103:4028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shelton J, Lu X, Hollenbaugh J, Cho JH, Amblard F, Schinazi RF. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem Rev. 2016;116:14379–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3:415–24.

    Article  CAS  PubMed  Google Scholar 

  12. Knappenberger AJ, Ahmad MF, Viswanathan R, Dealwis CG, Harris ME. Nucleoside analogue triphosphates allosterically regulate human ribonucleotide reductase and identify chemical determinants that drive substrate specificity. Biochemistry. 2016;55:5884–96.

    Article  CAS  PubMed  Google Scholar 

  13. Van der Donk WA, Yu G, Silva DJ, Stubbe J, McCarthy JR, et al. Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochemistry. 1996;35:8381–91.

    Article  PubMed  Google Scholar 

  14. Fritscher J, Artin E, Wnuk S, Bar G, Robblee JH, et al. Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′-diphosphate: Trapping of the 3′-ketonucleotide. J Am Chem Soc 2005;127:7729–38.

    Article  CAS  PubMed  Google Scholar 

  15. Sandler AB, Nemunaitis J, Denham C, Pawel J, Cormier Y, Gatzemeier U, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2000;18:122–30.

    Article  CAS  PubMed  Google Scholar 

  16. Burris HA, Moore MJ, Andersen J, Green MR, M L Rothenberg ML, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15:2403–13.

    Article  CAS  PubMed  Google Scholar 

  17. Kuş T, Aktas G Maintenance treatment with gemcitabine have a promising activity on metastatic bladder cancer survival. Turk J Urol 2017;43:273–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998;58:4349–57.

    CAS  PubMed  Google Scholar 

  19. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Annals of Oncology 2006;17:v7–v12.

    Article  PubMed  Google Scholar 

  20. Wang J, Lohman GJ, Stubbe J. Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. Proc Natl Acad Sci 2007;104:14324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pereira S, Fernandes PA, Ramos MJ. Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. J Comput Chem 2004;25:1286–94.

    Article  CAS  PubMed  Google Scholar 

  22. Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2014;34:2011–21.

    Article  PubMed  CAS  Google Scholar 

  23. Wisitpitthaya S, Zhao Y, Long MJC, Li M, Fletcher EA, Blessing WA, et al. Cladribine and fludarabine nucleotides induce distinct hexamers defining a common mode of reversible RNR inhibition. ACS Chem Biol 2016;11:2021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herold N, Rudd SG, Sanjiv K, Kutzner J, Myrberg IH, et al. With me or against me: Tumor suppressor and drug resistance activities of SAMHD1. Exp Hematol 2017;52:32–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and nucleoside analogues: Resistance and re-sensitisation at the level of pharmacokinetics, pharmacodynamics and metabolism. Cancers 2018;10:240.

    Article  PubMed Central  CAS  Google Scholar 

  26. Supuran CT. Special issue: sulfonamides. Molecules 2017;22:1642. https://doi.org/10.3390/molecules22101642

    Article  CAS  PubMed Central  Google Scholar 

  27. Maren TH. Relations between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 1976;16:309–27.

    Article  CAS  PubMed  Google Scholar 

  28. Winum JY, Scozzafava A, Montero JL, Supuran CT. The sulfamide motif in the design of enzyme inhibitors. Expert Opin Ther Pat 2006;16:27–47.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang F, Zheng D, Lai L, Cheng J, Sun J, Wu J. Synthesis of aromatic sulfonamides through a copper-catalyzed coupling of aryldiazonium tetrafluoroborates, DABCO·(SO2)2, and N‑chloroamines. Org Lett 2018;20:1167–70.

    Article  CAS  PubMed  Google Scholar 

  30. Berrino E, Bua S, Mori M, Botta M, Murthy VS, Vijayakumar V, et al. Novel sulfamide-containing compounds as selective carbonic anhydrase I inhibitors. Molecules 2017;22:1049. https://doi.org/10.3390/molecules22071049

    Article  CAS  PubMed Central  Google Scholar 

  31. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Anticancer and antiviral sulfonamides. Curr Med Chem 2003;10:925–53.

    Article  CAS  PubMed  Google Scholar 

  32. Krátký M, Stolaříková J, Vinšová J. Novel sulfamethoxazole ureas and oxalamide as potential antimycobacterial agents. Molecules 2017;22:535.

    Article  PubMed Central  CAS  Google Scholar 

  33. Van Ostrand R, Jacobsen C, Delahunty A, Stringer C, Noorbehesht R, Ahmed H, et al. Synthesis and antibacterial activity of 5′-tetrachlorophthalimido and 5′-azido 5′-deoxyribonucleosides. Nucleosides Nucleotides Nucleic Acids. 2017;36:181–97.

    Article  PubMed  CAS  Google Scholar 

  34. Iranpoor N, Firouzabadi H, Khalili D, Motevalli S. Easily prepared azopyridines as potent and recyclable reagents for facile esterification reactions. J Org Chem 2008;73:4882–7.

    Article  CAS  PubMed  Google Scholar 

  35. Van Rompay AR, Johansson M, Karlsson A. Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol Ther 2000;87:189–98.

    Article  PubMed  Google Scholar 

  36. Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010-2011 in review. J Mol Recognit 2013;26:215–39.

    Article  CAS  PubMed  Google Scholar 

  37. Molsoft ICM-Pro user’s guide v.3.8. Breakthrough technologies for life science and drug design. http://www.molsoft.com

  38. Neves MAC, Totrov M, Abagyan R. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J Comput Aided Mol Des 2012;26:675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mendoza JA, Pineda RY, Nguyen M, Tellez M, Awad AM. Molecular docking studies, in-silico ADMET predictions and synthesis of novel PEGA-nucleosides as antimicrobial agents targeting class B1 metallo-β-lactamases. In Silico Pharmacol 2021;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brignole EJ, Tsai K-L, Chittuluru J, Li H, Aye Y, Penczek PA, et al. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. eLife 2018;7:e31502.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ahmad MF, Kaushal PS, Wan Q, Wijerathna SR, An X, Huang M, et al. Role of Arginine 293 and Glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase. J Mol Biol 2012;419:315–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Plochocka D, Rabczenko A, Davies DB. Intramolecular hydrogen bonding and molecular conformations of nucleosides: uridine derivatives. J Chem Soc Perkin Trans 1981;2:82–9.

    Article  Google Scholar 

  43. Pitha J. Hydrogen bonding in derivatives of adenosine and uridine. Biochemistry 1970;9:3678–82.

    Article  CAS  PubMed  Google Scholar 

  44. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 2016;101:89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019;35:1067–9.

    Article  CAS  PubMed  Google Scholar 

  47. Robinson K, Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front Oncol 2020. https://doi.org/10.3389/fonc.2020.00265

  48. Zhou S, Chan SY, Goh BC, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 2005;44:279–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CSU Chancellor’s office Grant and RSCA awards. The authors also acknowledge the SURF program at CSU Channel Islands for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Awad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, P.J., Jacobs, H.B., Alnouri, L. et al. Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1). Med Chem Res 31, 1109–1119 (2022). https://doi.org/10.1007/s00044-021-02840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02840-4

Keywords

Navigation