Skip to main content

Advertisement

Log in

Development of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives as multifunctional agents for Alzheimer’s disease treatment

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Due to the complex pathogenesis of AD, the multitarget-directed ligands (MTDLs) strategy presented the best pharmacological option for AD treatment. Herein, a series of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives (5af and 6af) was rationally designed and synthesized. Of these derivatives, 5c was a good multifunctional agent (eeAChE IC50 = 7.9 μM, MAO-B IC50 = 9.9 μM, BACE1 IC50 = 8.3 μM) in vitro and displayed a mixed-type AChE inhibition, which could bind to the CAS and PAS of AChE. Compound 5c also exhibited good antioxidant activity (ORAC = 2.5 eq) and neuroprotective effects. Furthermore, compound 5c was a selective metal ions chelator. And it could cross blood–brain barrier in vitro and complied with drug-like properties rule of 5. Therefore, compound 5c was a promising multifunctional agent for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnett R. Alzheimer’s disease. Lancet. 2019;393:1589.

    Article  Google Scholar 

  2. Patterson C. World Alzheimer Report 2018—the state of the art of dementia research: new frontiers. Alzheimer’s Disease International (ADI), London. 2018;1–48.

  3. Alzheimer’s Disease International. 2019. World Alzheimer Report 2019: Attitudes to dementia. London: Alzheimer’s Disease International. London. 2019;1-166.

  4. Wang YJ. Alzheimer disease: Lessons from immunotherapy for Alzheimer disease. Nat Rev Neurol. 2014;10:188–9.

    Article  CAS  Google Scholar 

  5. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci. 2018;19:687–700.

    Article  CAS  Google Scholar 

  6. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36:375–99.

    Article  CAS  Google Scholar 

  7. Greig NH, Utsuki T, Yu Q, Zhu X, Holloway HW, Perry T, et al. A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin. 2001;17:159–65.

    Article  CAS  Google Scholar 

  8. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  CAS  Google Scholar 

  9. Nalivaeva NN, Turner AJ. Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharm. 2019;176:3447–63.

    Article  CAS  Google Scholar 

  10. Burki T. Alzheimer’s disease research: the future of BACE inhibitors. Lancet 2018;391:2486.

    Article  Google Scholar 

  11. Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur J Med Chem. 2018;148:436–52.

    Article  CAS  Google Scholar 

  12. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17.

    Article  CAS  Google Scholar 

  13. Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer’s Disease: A Key Role or Not? Acc Chem Res. 2019;52:2026–35.

    Article  CAS  Google Scholar 

  14. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, et al. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener. 2020;9:10.

    Article  Google Scholar 

  15. Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther. 2017;9:57.

    Article  Google Scholar 

  16. de Freitas Silva M, Dias KST, Gontijo VS, Ortiz CJC, Viegas C Jr. Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: An update. Curr Med Chem. 2018;25:3491–525.

    Article  Google Scholar 

  17. Gezegen H, Gürdere MB, Dinçer A, Özbek O, Koçyiğit ÜM, Taslimi P, et al. Ceylan M. Synthesis, molecular docking, and biological activities of new cyanopyridine derivatives containing phenylurea. Arch Pharm. 2021;354:e2000334.

    Article  Google Scholar 

  18. Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51:347–72.

    Article  CAS  Google Scholar 

  19. Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem. 2019;176:228–47.

    Article  CAS  Google Scholar 

  20. Legoabe LJ, Petzer A, Petzer JP. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors. Drug Des Devel Ther. 2015;9:3635–44.

    Article  CAS  Google Scholar 

  21. Zhu G, Wang K, Shi J, Zhang P, Yang D, Fan X, et al. The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2019;29:126625.

    Article  CAS  Google Scholar 

  22. Sang Z, Wang K, Wang H, Wang H, Ma Q, Han X, et al. Liu W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2017;27:5046–52.

    Article  CAS  Google Scholar 

  23. Domínguez JL, Fernández-Nieto F, Castro M, Catto M, Paleo MR, Porto S, et al. Computer-aided structure-based design of multitarget leads for Alzheimer’s disease. J Chem Inf Model. 2015;55:135–48.

    Article  Google Scholar 

  24. Sang Z, Qiang X, Li Y, Yuan W, Liu Q, Shi Y, et al. Deng Y. Design, synthesis and evaluation of scutellarein-O-alkylamines as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2015;94:348–66.

    Article  CAS  Google Scholar 

  25. Rosenberry TL, Sonoda LK, Dekat SE, Cusack B, Johnson JL. Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter. Biochemistry. 2008;47:13056–63.

    Article  CAS  Google Scholar 

  26. Sang Z, Wang K, Shi J, Liu W, Cheng X, Zhu G, et al. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem. 2020;192:112180.

    Article  CAS  Google Scholar 

  27. Sang Z, Wang K, Shi J, Cheng X, Zhu G, Wei R, et al. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur J Med Chem. 2020;187:111958.

    Article  CAS  Google Scholar 

  28. Sang Z, Wang K, Wang H, Wang H, Ma Q, Han X, et al. Liu W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2017;27:5046–52.

    Article  CAS  Google Scholar 

  29. Wang XL, Bian ZX, Wang XG. The IR spectra of complexes of N-(phenyl, ferrocenyl)methyl-beta-hydroxyethylamine with Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). Guang Pu Xue Yu Guang Pu Fen Xi. 2007;27:2221–3.

    CAS  PubMed  Google Scholar 

  30. Sang Z, Wang K, Zhang P, Shi J, Liu W. Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2019;180:238–52.

    Article  CAS  Google Scholar 

  31. Zhao XJ, Gong DM, Jiang YR, Guo D, Zhu Y, Deng YC. Multipotent AChE and BACE-1 inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and bio-analysis of 7-amino-1,4-dihydro-2H-isoquilin-3-one derivates. Eur J Med Chem. 2017;138:738–47.

    Article  CAS  Google Scholar 

  32. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 2003;38:223–32.

    Article  CAS  Google Scholar 

  33. Sang Z, Li Y, Qiang X, Xiao G, Liu Q, Tan Z, Deng Y. Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2015;23(4):668-680.

  34. Sang Z, Pan W, Wang K, Ma Q, Yu L, Liu W. Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2017;25(12):3006-3017.

Download references

Acknowledgements

This work was supported by funding from the Key Scientific Research Project of Colleges and Universities in Henan Province (NO.20A350006), and the Special Project of Nanyang Normal University (SYKF2020032, 2020QN036, and 2020QN045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Tang or Zhipei Sang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Li, X., Yang, J. et al. Development of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives as multifunctional agents for Alzheimer’s disease treatment. Med Chem Res 30, 2016–2029 (2021). https://doi.org/10.1007/s00044-021-02786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02786-7

Keywords

Navigation