Skip to main content

Advertisement

Log in

Targeting γ-secretase for familial Alzheimer’s disease

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Familial Alzheimer’s disease (FAD) is a rare early-onset genetic form of common dementia of old age. Striking in middle age, FAD is caused by missense mutations in three genes: APP (encoding the amyloid precursor protein) and PSEN1 and PSEN2 (encoding presenilin-1 and presenilin-2). APP is proteolytically processed successively by β-secretase and γ-secretase to produce the amyloid β-peptide (Aβ). Presenilin is the catalytic component of γ-secretase, a membrane-embedded aspartyl protease complex that cleaves APP within its single transmembrane domain to produce Aβ of varying lengths. Thus, all FAD mutations are found in the substrate and the enzyme that produce Aβ. The 42-residue variant Aβ42 has been the primary focus of Alzheimer drug discovery for over two decades, as this particular peptide is highly prone to aggregation, is the major protein deposited in the characteristic cerebral plaques of Alzheimer’s disease and is proportionately elevated in FAD. Despite extensive efforts, all agents targeting Aβ and Aβ42 have failed in the clinic, including γ-secretase inhibitors, leading to questioning of the amyloid hypothesis of Alzheimer pathogenesis. However, processing of the APP transmembrane domain by γ-secretase is complex, involving initial endoproteolysis followed by successive carboxypeptidase trimming steps to secreted Aβ peptides such as Aβ42. Recent findings reveal that FAD mutations in PSEN1 and in APP result in the deficient trimming of initially formed long Aβ peptides. A logical drug discovery strategy for FAD could therefore involve the search for compounds that rescue this deficient carboxypeptidase activity. The rare early-onset FAD arguably presents a simpler path to developing effective therapeutics compared to the much more complex heterogeneous sporadic Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Alzheimer’s disease:

(AD)

amyloid β-peptide:

(Aβ)

amyloid precursor protein:

(APP)

amyloid precursor protein intracellular domain:

(AICD)

99-residue APP membrane-bound stub:

(C99)

C-terminal fragment:

(CTF)

cryo-electron microscopy:

(cryo-EM)

familial Alzheimer’s disease:

(FAD)

γ-secretase inhibitor:

(GSI)

γ-secretase modulator:

(GSM)

N-terminal fragment:

(NTF)

(polyacrylamide gel electrophoresis):

PAGE

presenilin-1:

(PSEN1)

presenilin-2:

(PSEN2)

transition-state analog inhibitor:

(TSA)

transmembrane domain:

(TMD).

References

  1. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  2. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

    Article  CAS  PubMed  Google Scholar 

  3. Cole SL, Vassar R. The role of APP processing by BACE1, the β-secretase, in Alzheimer’s disease pathophysiology. J Biol Chem. 2008;283:29621–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature. 1991;353:844–6.

    Article  CAS  PubMed  Google Scholar 

  5. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349:704–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  PubMed  Google Scholar 

  7. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. 1992;359:322–5.

    Article  CAS  PubMed  Google Scholar 

  8. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376:775–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–60.

    Article  CAS  PubMed  Google Scholar 

  10. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–7.

    Article  CAS  PubMed  Google Scholar 

  11. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

    Article  CAS  PubMed  Google Scholar 

  12. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med. 1997;3:67–72.

    Article  CAS  PubMed  Google Scholar 

  13. Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron. 1996;17:181–90.

    Article  CAS  PubMed  Google Scholar 

  14. Thinakaran G, Harris CL, Ratovitski T, Davenport F, Slunt HH, Price DL, et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem. 1997;272:28415–22.

    Article  CAS  PubMed  Google Scholar 

  15. Ratovitski T, Slunt HH, Thinakaran G, Price DL, Sisodia SS, Borchelt DR. Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J Biol Chem. 1997;272:24536–41.

    Article  CAS  PubMed  Google Scholar 

  16. Capell A, Grunberg J, Pesold B, Diehlmann A, Citron M, Nixon R, et al. The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J Biol Chem. 1998;273:3205–11.

    Article  CAS  PubMed  Google Scholar 

  17. Podlisny MB, Citron M, Amarante P, Sherrington R, Xia W, Zhang J, et al. Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol Dis. 1997;3:325–37.

    Article  CAS  PubMed  Google Scholar 

  18. Yu G, Chen F, Levesque G, Nishimura M, Zhang DM, Levesque L, et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J Biol Chem. 1998;273:16470–5.

    Article  CAS  PubMed  Google Scholar 

  19. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998;391:387–90.

    Article  PubMed  Google Scholar 

  20. Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, et al. Presenilins are required for γ-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol. 2000;2:463–5.

    Article  CAS  PubMed  Google Scholar 

  21. Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol. 2000;2:461–2.

    Article  CAS  PubMed  Google Scholar 

  22. Wolfe MS, Citron M, Diehl TS, Xia W, Donkor IO, Selkoe DJ. A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J Med Chem. 1998;41:6–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Donkor IO, et al. Peptidomimetic probes and molecular modeling suggest Alzheimer’s γ-secretases are intramembrane-cleaving aspartyl proteases. Biochemistry. 1999;38:4720–7.

    Article  CAS  PubMed  Google Scholar 

  24. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature. 1999;398:513–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfe MS, De Los Angeles J, Miller DD, Xia W, Selkoe DJ. Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. Biochemistry. 1999;38:11223–30.

    Article  CAS  PubMed  Google Scholar 

  26. Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai J-Y, et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol. 2000;2:428–34.

    Article  CAS  PubMed  Google Scholar 

  27. Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405:689–94.

    Article  CAS  PubMed  Google Scholar 

  28. De Strooper B. Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron. 2003;38:9–12.

    Article  PubMed  Google Scholar 

  29. Esler WP, Kimberly WT, Ostaszewski BL, Ye W, Diehl TS, Selkoe DJ, et al. Activity-dependent isolation of the presenilin/γ-secretase complex reveals nicastrin and a γ substrate. Proc Natl Acad Sci USA. 2002;99:2720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Das C, Berezovska O, Diehl TS, Genet C, Buldyrev I, Tsai JY, et al. Designed helical peptides inhibit an intramembrane protease. J Am Chem Soc. 2003;125:11794–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bihel F, Das C, Bowman MJ, Wolfe MS. Discovery of a subnanomolar helical D-tridecapeptide inhibitor of γ-secretase. J Med Chem. 2004;47:3931–3.

    Article  CAS  PubMed  Google Scholar 

  32. Kornilova AY, Bihel F, Das C, Wolfe MS. The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc Natl Acad Sci USA. 2005;102:3230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L. et al. An atomic structure of human γ-secretase. Nature. 2015;525:212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. Recognition of the amyloid precursor protein by human γ-secretase. Science. 2019;363:eaaw0930.

    Article  CAS  PubMed  Google Scholar 

  35. Bhattarai S, Devkota S, Meneely KM, Xing M, Douglas JT, Wolfe MS. Design of substrate transmembrane mimetics as structural probes for γ-secretase. J Am Chem Soc. 2020;142:3351–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B. et al. The γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces Aβ levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 2003;305:864–71.

    Article  CAS  PubMed  Google Scholar 

  37. Barten DM, Guss VL, Corsa JA, Loo AT, Hansel SB, Zheng M, et al. Dynamics of β-amyloid reductions in brain, cerebrospinal fluid and plasma of β-amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J Pharm Exp Ther. 2004;312:635043.

    Google Scholar 

  38. Lanz TA, Hosley JD, Adams WJ, Merchant KM. Studies of Aβ pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the γ-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther. 2004;309:49–55.

    Article  CAS  PubMed  Google Scholar 

  39. Hadland BK, Manley NR, Su D, Longmore GD, Moore CL, Wolfe MS, et al. Secretase inhibitors repress thymocyte development. Proc Natl Acad Sci USA. 2001;98:7487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Sem Cell Dev Biol. 2020;105:27–42.

    Article  Google Scholar 

  41. Kopan R, Ilagan MX. γ-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol. 2004;5:499–504.

    Article  CAS  PubMed  Google Scholar 

  42. Selkoe D, Kopan R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565–97.

    Article  CAS  PubMed  Google Scholar 

  43. Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature. 1997;387:288–92.

    Article  CAS  PubMed  Google Scholar 

  44. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell. 1997;89:629–39.

    Article  CAS  PubMed  Google Scholar 

  45. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004;279:12876–82.

    Article  CAS  PubMed  Google Scholar 

  46. Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, et al. Adipsin: a biomarker of gastrointestinal toxicity mediated by a functional γ-secretase inhibitor. J Biol Chem. 2003;278:46107–16.

    Article  CAS  PubMed  Google Scholar 

  47. Crump CJ, Castro SV, Wang F, Pozdnyakov N, Ballard TE, Sisodia SS, et al. BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry. 2012;51:7209–11.

    Article  CAS  PubMed  Google Scholar 

  48. Coric V, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M, et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 2015;72:1324–33.

    Article  PubMed  Google Scholar 

  49. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369:341–50.

    Article  CAS  PubMed  Google Scholar 

  50. Castro MA, Hadziselimovic A, Sanders CR. The vexing complexity of the amyloidogenic pathway. Protein Sci. 2019;28:1177–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y, et al. Differential effects between γ-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci. 2012;32:2037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCaw TR, Inga E, Chen H, Jaskula-Sztul R, Dudeja V, Bibb JA, et al. Secretase inhibitors in cancer: a current perspective on clinical performance. Oncologist. 2020;7:13627.

    Google Scholar 

  53. Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci USA. 2017;114:E476–E85.

    Article  CAS  PubMed  Google Scholar 

  54. http://www.alzforum.org/mutations.

  55. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, et al. Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci. 2009;29:13042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quintero-Monzon O, Martin MM, Fernandez MA, Cappello CA, Krzysiak AJ, Osenkowski P, et al. dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer’s disease-causing presenilin mutations. Biochemistry. 2011;50:9023–35.

    Article  CAS  PubMed  Google Scholar 

  57. Fernandez MA, Klutkowski JA, Freret T, Wolfe MS. Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Abeta) by γ-secretase to increase 42-to-40-residue Aβ. J Biol Chem. 2014;289:31043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Devkota S, Williams TD, Wolfe MS. Familial Alzheimer’s disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of >45 residues. J Biol Chem. 2021;296:100281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wolfe MS. In search of pathogenic amyloid β-peptide in familial Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;168:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bursavich MG, Harrison BA, Blain JF. γ-secretase modulators: new Alzheimer’s drugs on the horizon? J Med Chem. 2016;59:7389–409.

    Article  CAS  PubMed  Google Scholar 

  61. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature. 2001;414:212–6.

    Article  CAS  PubMed  Google Scholar 

  62. Rynearson KD, Ponnusamy M, Prikhodko O, Xie Y, Zhang C, Nguyen P, et al. Preclinical validation of a potent γ-secretase modulator for Alzheimer’s disease prevention. J Exp Med. 2021;218:e20202560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spanò V, Venturini A, Genovese M, Barreca M, Raimondi MV, Montalbano A, et al. Current development of CFTR potentiators in the last decade. Eur J Med Chem. 2020;204:112631.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant AG66986 from the U.S. National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Wolfe.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfe, M.S. Targeting γ-secretase for familial Alzheimer’s disease. Med Chem Res 30, 1321–1327 (2021). https://doi.org/10.1007/s00044-021-02744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02744-3

Keywords

Navigation