Skip to main content

Advertisement

Log in

3,4-Dihydro-quinolin-2-one derivatives from extremophilic Streptomyces sp. LGE21

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Three new naturally-occurring 3,4-dihydroquinoline-2-one derivatives: 8-Hydroxy-3,4-dihydro-1H-quinolin-2-one (1), 3,4-dihydro-1H-quinolin-2-one (2) and 8-methoxy-3,4-dihydro-1H-quinolin-2-one (3), together with linoleic acid, glycerol monolinoleate and phenyl acetic acid were isolated from the Streptomyces sp. LGE21, derived from Lemna gibba. Structures of the new alkaloids (13) were determined by extensive 1D and 2D NMR, and MS measurements. In vitro cytotoxic studies of 13 and linoleic acid, in comparison with the original extract were assayed against liver cancer HEPG2 cell line and the human cervix carcinoma cell line (KB-3-1). The antimicrobial activity of the strain extract and compounds 13 were achieved as well. The new metabolites exhibited weak cytotoxic activities against cancer cell lines and growth inhibitory activity against a panel of tested bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arasu MV, Duraipandiyan V, Ignacimuthu S (2013) Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp. AP-123 and its cytotoxic effect. Chemosphere 90:479–487

    Article  PubMed  CAS  Google Scholar 

  • Balachandran C, Duraipandiyan V, Emi N, Ignacimuthu S (2015) Antimicrobial and cytotoxic properties of Streptomyces sp. (ERINLG-51) isolated from Southern Western Ghats. South Ind J Biol Sci 1:7–14

    Google Scholar 

  • Baur AW, Kirby WM, Sherris JC, Truck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–2

    Article  PubMed  CAS  Google Scholar 

  • Brady SF, Clardy J (2000) CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. J Nat Prod 63:1447–1448

    Article  PubMed  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Fitzgerald P, Singh SB, O’Neill EA, Schwartz CD, Thompson CM, O’Keefe SJ, Zalle DM, Doherty JB (2008) Synthesis and biological activity of quinolinone and dihydroquinolinone p38 MAP kinase inhibitors. Bioorg Med Chem Lett 18:2222–2226

    Article  PubMed  CAS  Google Scholar 

  • Christadore LM (2013) Discovery of a small molecule dihydroquinolinone inhibitor with potent antiproliferative and antitumor activity results in catastrophic cell division. Dissertation, Boston University

  • Cortés Y, Hormazábal E, Leal H, Urzúa A, Mutis A, Parra L, Quiroz A (2014) Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electron J Biotechin 17:126–131

    Article  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79

    Article  PubMed  CAS  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamed A, Abdel-Razek AS, Frese M, Stammler HG, El-Haddad AF, Ibrahim TMA, Sewald N, Shaaban M (2018) Terretonin N: a new meroterpenoid from Nocardiopsis sp. Molecules 23:1–12

    Article  CAS  Google Scholar 

  • Hamed A, Abdel-Razek AS, Frese M, Wibberg D, El-Haddad AF, Ibrahim TMA, Kalinowski A, Sewald N, Shaaban M (2017) New oxaphenalene derivative from marine-derived Streptomyces griseorubens sp. ASMR4. Z Naturforsch B 72:53–62

    Article  CAS  Google Scholar 

  • Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W (2015) Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot 68:206–209

    Article  PubMed  CAS  Google Scholar 

  • Ho J-C, Chen C-M, Row L-C (2005) Flavonoids and benzene derivatives from the flowers and fruit of Tetrapanax papyriferus. J Nat Prod 68:1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Nakatani T, Inoue Y, Nakayama M, Nozaki H (1997) New dihydroquinolinone toxic to artemia salina produced by Penicillium sp. NTC-47. Biosci Biotechnol Biochem 61:914–916

    Article  PubMed  CAS  Google Scholar 

  • Kekuda TRP, Shobha KS, Onkarappa R (2010) Fascinating diversity and potent biological activities of Actinomycete metabolites. J Pharm Res 3:250–256

    CAS  Google Scholar 

  • Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    Article  PubMed  CAS  Google Scholar 

  • Krohn (2016) Chapman & Hall Chemical Database. Dictionary of Natural Products on CD-ROM

  • Kumar V, Bharti A, Gusain OP, Bisht GS (2010) An improved method for isolation of genomic DNA from filamentous actinomycetes. J Sci Engg Tech Mgt 2:10–13

    Google Scholar 

  • Laatsch H (2018) A data base for rapid structural determination of microbial natural products, and annual updates. Wiley-VCH, Weinheim Germany

    Google Scholar 

  • Lee BS, Chi DY (1968) Beckmann rearrangement of 1-indanone oxime using aluminium chloride. Bull Korean Soc 19:1373–1375

    Google Scholar 

  • Mann J (2001) Natural products as immunosuppressive agents. Nat Prod Rep 18:417–43

    Article  PubMed  CAS  Google Scholar 

  • Merckx R, Dijkra A, Hartog AD, Veen JAV (1987) Production of root-derived material and associated microbial grow thin soil at different nutrient levels. Biol Fert Soils 5:126–132

    Article  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochem Syst Ecol 38:595–601

    Article  CAS  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus and related taxa. Antonie Van Leeuwenhoek 74:119–132

    Article  PubMed  CAS  Google Scholar 

  • Ordóñez M, Arizpe A, Sayago FJ, Jiménez AI, Cativiela C (2016) Practical and efficient synthesis of aminophosphonic acids containing 1,2,3,4-tetrahydroquinoline or 1,2,3,4-tetrahydroisoquinoline heterocycles. Molecules 21:1140. https://doi.org/10.3390/molecules21091140

    Article  CAS  Google Scholar 

  • Oshiro Y, Sakurai Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Miwa T, Nishi T (2000) 3,4-dihydro-2(1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-3,4- dihydro-5-methoxy-2(1H)-quinolinone and its derivatives. J Med Chem 43:177–189

    Article  PubMed  CAS  Google Scholar 

  • Pai NR, Samel AB (2011) Synthesis of novel 3,4-dihydroquinolin-2(1H)-one guanidines as potential antihypertensive agents. Asian J Chem 23:1655–1660

    CAS  Google Scholar 

  • Panetta JA, Rapoport H (1982) New syntheses of coumarins. J Org Chem 47:947–950

    Google Scholar 

  • Pecznska-Czoch W, Mordarski M (1988) Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M (ed) Actinomycetes in Biotechnology. Academic Press, London, p 219–283

    Chapter  Google Scholar 

  • Scifinder (2018) Chemical Abstracts Service: Germany. https://scifinder.cas.org/scifinder

  • Shaaban M (2004) Bioactive secondary metabolites from marine and terrestrial bacteria: isoquinolinequinones, bacterial compounds with a novel pharmacophor. Dissertation, Georg-August University

  • Shaaban M, Nasr H, Hassan AZ, Asker MS (2013) Bioactive secondary metabolites from endophytic Aspergillus fumigatus: Structural elucidation and bioactivity studies. Rev Latinoam De Quím 41:50–60

    CAS  Google Scholar 

  • Shaaban M, El-Hagrassi AM, Abdelghani MA, Osman AF (2017) Diverse bioactive compounds from Sarcophtyton glaucom: structure elucidation and cytotoxic activity studies. Z Naturforsch B. https://doi.org/10.1515/znc-2017-0106

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Singh SB, Zink DL, Guan Z, Collado J, Pelaez F, Felock PJ, Hazuda DJ (2003) Isolation, structure and HIV-1 integrase inhibitory activity of xanthoviridicatin E and F, two novel fungal metabolites produced by Penicillium chrysogenum. Helv Chim Acta 86:3380–3385

    Article  CAS  Google Scholar 

  • Shiono Y, Nitto A, Shimanuki K, Koseki T, Murayama T, Miyakawa T, Yoshida J, Kimura K (2009) A new benzoxepin metabolite isolated from endophytic fungus Phomopsis sp. J Antibiot 62:533–535

    Article  PubMed  CAS  Google Scholar 

  • Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72

    Article  PubMed  CAS  Google Scholar 

  • Strohl WR (2004) Antimicrobials. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, USA, p 336–355

    Chapter  Google Scholar 

  • Subbulakshmi GK, Thalavaipandian A, Ramesh V, Bagyalakshmi RA (2012) Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int J AdvLife Sci 4:9–15

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tresner HD, Hayes JA, Backus EJ (1968) Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. Appl Microbiol 16:1134–1136

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Yassin AF, Galiniski EA, Wohlfarth A, Jahnke KD, Schaal KB, Truper HG (1993) A new actinomycete species, Nocardiopsis lucentensis sp. nov. Int J Syst Bacteriol 43:266–271

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zeitler K, Rose CA (2009) An efficient carbene-catalyzed access to 3,4-dihydrocoumarins. J Org Chem 74:1759–1762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the NMR and MS Departments in Bielefeld University for the spectral measurements. We thank Carmela Michalek for biological activity testing and Marco Wißbrock for technical assistance. This research work has been financed by the German Academic Exchange Service (DAAD) with funds from the German Federal Foreign Office in the frame of the Research Training Network “Novel Cytotoxic Drugs from Extremophilic Actinomycetes” (ProjectID57166072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaaban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.M., Abdel-Razek, A.S., Frese, M. et al. 3,4-Dihydro-quinolin-2-one derivatives from extremophilic Streptomyces sp. LGE21. Med Chem Res 27, 1834–1842 (2018). https://doi.org/10.1007/s00044-018-2195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2195-8

Keywords

Navigation