Skip to main content

Advertisement

Log in

Integrated in silico–in vitro screening of ovarian cancer peroxisome proliferator-activated receptor-γ agonists against a biogenic compound library

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In recent years, peroxisome proliferator-activated receptor-γ (PPARγ) activation by selective agonists has been emerged as a new and promising strategy for ovarian cancer therapy and prevention. Here, an integrated screening protocol that combined computational protein–ligand binding analysis and cell-based reporter-gene assay was performed against >180,000 biogenic compounds (primary and secondary metabolites) to discover novel potent PPARγ agonists. The screening integrated empirical non-binder exclusion, high-throughput molecular docking, fast affinity scoring, and molecular dynamics simulations to identify promising candidates. Consequently, 12 hits were tested in vitro, from which one and three compounds were found to have high and moderate agonistic potencies for PPARγ with EC50 values at nanomolar and micromolar levels, respectively. Structural bioinformatics analysis revealed a variety of chemical interactions, such as hydrogen bonds, van der Waals contacts, and hydrophobic forces at PPARγ complex interface with the newly identified agonists, conferring both high stability and strong specificity to PPARγ–agonist binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen WJ, Balius TE, Mukherjee S (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Z, Hou S, Zhang S, Li Z, Zhou P, (2017) Targeting Self-Binding Peptides as a Novel Strategy To Regulate Protein Activity and Function: A Case Study on the Proto-oncogene Tyrosine Protein Kinase -Src. J Chem Inf Model 57:835–845

  • Bermúdez V, Finol F, Parra N (2010) PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am J Ther 17:274–283

    Article  PubMed  Google Scholar 

  • Bruning JB, Chalmers MJ, Prasad S (2007) Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15:1258–1271

    Article  CAS  PubMed  Google Scholar 

  • Butina D (1999) Unsupervised data base clustering based on daylight’s fingerprint and Tanimoto similarity: a fast and automated way to cluster small and large data sets. J Chem Inf Comput Sci 39:747–750

    Article  CAS  Google Scholar 

  • Case DA, Cheatham III TE, Darden T (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particale mesh Ewald: and N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • DeFronzo RA, Tripathy D, Schwenke DC (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Farce A, Renault N, Chavatte P (2009) Structural insight into PPARgamma ligands binding. Curr Med Chem 16:1768–1789

    Article  CAS  PubMed  Google Scholar 

  • Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159

    Article  CAS  PubMed  Google Scholar 

  • Guasch L, Sala E, Castell-Auví A (2012) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS ONE 7:e50816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen K, Byrjalsen I, Qvist P (2011) Efficacy and safety of the PPARγ partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev 27:392–401

    Article  CAS  PubMed  Google Scholar 

  • Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inf 31:114–122

    Article  CAS  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase M, Asano T, Sasaki N (2010) Withdrawal of pioglitazone in patients with type 2 diabetes mellitus. J Clin Pharm Ther 35:401–408

    CAS  PubMed  Google Scholar 

  • Kallenberger BC, Love JD, Chatterjee VK (2003) A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol 10:136–140

    Article  CAS  PubMed  Google Scholar 

  • Krentz AJ, Friedmann PS (2006) Type 2 diabetes, psoriasis and thiazolidinediones. Int J Clin Prac 60:362–363

    Article  CAS  Google Scholar 

  • Kuwabara K, Murakami K, Todo M (2004) A novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice. J Pharmacol Exp Ther 309:970–977

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Chang GS, Lee IH (2004) The PreADME: PC-based program for batch predication of ADME properties. EuroQSAR 2004(9):5–10

    Google Scholar 

  • Lin J, Sahakian DC, de Morais SM (2003) The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem 3:1125–1154

    Article  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW (2007) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  Google Scholar 

  • Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358

    Article  CAS  PubMed  Google Scholar 

  • Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W (2006) International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741

    Article  CAS  PubMed  Google Scholar 

  • Oprea TI, Davis AM, Teague SJ (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Penumetcha M, Santanam N (2012) Nutraceuticals as ligands of PPARγ. PPAR Res 2012:858352

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryckaert J, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints—molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Salentin S, Schreiber S, Haupt VJ (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schupp M, Lee LD, Frost N (2006) Regulation of peroxisome proliferator-activated receptor gamma activity by losartan metabolites. Hypertension 47:586–589

    Article  CAS  PubMed  Google Scholar 

  • Shigeto T, Yokoyama Y, Xin B, Mizunuma H (2007) Peroxisome proliferator-activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep 18:833–840

    CAS  PubMed  Google Scholar 

  • Tseng CH (2012) Pioglitazone and bladder cancer in human studies: is it diabetes itself, diabetes drugs, flawed analyses or different ethnicities? J Formos Med Assoc 111:123–131

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignati S, Albertini V, Rinaldi A, Kwee I, Riva C, Oldrini R, Capella C, Bertoni F, Carbone GM, Catapano CV (2006) Cellular and molecular consequences of peroxisome proliferator-activated receptor-gamma activation in ovarian cancer cells. Neoplasia 8:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Waltenberger B, Pferschy-Wenzig EM (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Xu HE, Lambert MH, Montana VG (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 98:13919–13924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. BioSyst. 12:1201–1213

  • Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015) Self-binding peptides: folding or binding? J Chem Inf Model 55:329–342

    Article  CAS  PubMed  Google Scholar 

  • Zieleniak A, Wójcik M, Woźniak LA (2008) Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma. Arch Immunol Ther Exp 56:331–345

    Article  CAS  Google Scholar 

  • Zheng W, Qiu L, Wang R (2015) Selective targeting of PPARγ by the natural product chelerythrine with a unique binding mode and improved anti-diabetic potency. Sci Rep 5:12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ming Lv.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GL., Liu, FY., Zhang, J. et al. Integrated in silico–in vitro screening of ovarian cancer peroxisome proliferator-activated receptor-γ agonists against a biogenic compound library. Med Chem Res 27, 341–349 (2018). https://doi.org/10.1007/s00044-017-2060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2060-1

Keywords

Navigation