Skip to main content
Log in

Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of pyran derivatives (5–27) were synthesized in good yields by utilizing Baylis–Hillman chemistry and were further investigated for their in vitro anticancer, antibacterial, and antifungal activities. Most of the tested compounds exhibited promising antibacterial activity as compared to the standard towards Gram-positive bacterial strains. The compounds 5–7, 11–13, and 17–19 displayed two-fold higher activity whereas compound 21 showed four-fold higher antibacterial activity against Staphylococcus aureus MTCC 96 as compared to the standard Neomycin. Some of these compounds exhibited moderate antifungal activity against all the tested fungal strains. Two compounds 16 and 23 showed promising anticancer activity against selected four human cancer cell lines such as A549, DU145, HeLa, and MCF7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Amsterdam D (1996) Susceptibility testing of antimicrobials in liquid media. In: Loman V (ed) Antibiot Lab Med, 4th edn. Williams and Wilkins, Baltimore, p 52–111

    Google Scholar 

  • Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS (2015) Discovery of novel synthetic methodologies and reagents during natural product synthesis in the post-palytoxin era. Chem Rev 115:9232–9276

    Article  CAS  PubMed  Google Scholar 

  • Armetso D, Horspool WM, Martin N, Ramos A, Seaone C (1989) Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J Org Chem 54:3069–3072

    Article  Google Scholar 

  • Atwal KS, Rovnyak GC, Schwartz J, Moreland S, Hedberg A, Gougoutas JZ, Malley MF, Floyd DM (1990) Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J Med Chem 33:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Basavaiah D, Dharma Rao P, Suguna Hyma R (1996) The Baylis-Hillman reaction: A novel carbon-carbon bond forming reaction. Tetrahedron 52:8001–8062

    Article  CAS  Google Scholar 

  • Basavaiah D, Kumaragurubaran N, Padmaja K (1999) Applications of the Baylis-Hillman adducts in organic synthesis: A facile synthesis of [E]-α-cyanocinnamyl alcohols and [E]-α-cyanocinnamic aldehydes. Synlett 1999:1630–1632

    Article  Google Scholar 

  • Basavaiah D, Rao AJ, Satyanarayana T (2003) Recent advances in the Baylis−Hillman reaction and applications. Chem Rev 103:811–892

    Article  CAS  PubMed  Google Scholar 

  • Basavaiah D, Reddy BS, Badsara SS (2010) Recent contributions from the Baylis−Hillman reaction to organic chemistry. Chem Rev 110:5447–5674

    Article  CAS  PubMed  Google Scholar 

  • Bensoussan C, Rival N, Hanquet G, Colobert F, Reymond S, Cossy J (2013) Iron-catalyzed cross-coupling between C-bromo mannopyranoside derivatives and a vinyl Grignard reagent: toward the synthesis of the C31-C52 fragment of amphidinol 3. Tetrahedron 69:7759–7770

    Article  CAS  Google Scholar 

  • Bharath Kumar S, Ravinder M, Kishore G, Jayathirtha Rao V, Yogeeswari P, Sriram D (2014) Synthesis, antitubercular and anticancer activity of new Baylis–Hillman adduct-derived N-cinnamyl-substituted isatin derivatives. Med Chem Res 23:1934–1940

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Pradhan K, Paul S, Das AR (2012) Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett 53:4687–4691

    Article  CAS  Google Scholar 

  • Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520

    Article  CAS  Google Scholar 

  • Ciller JA, Martin N, Seoane C, Soto JL (1985) Ring transformation of isoxazoles into furan and pyran derivatives. J Chem Soc Perkin Trans 1:2581–2584

    Article  Google Scholar 

  • Drewes SE, Roos GHP (1988) Synthetic potential of the tertiary-amine-catalysed reaction of activated vinyl carbanions with aldehydes. Tetrahedron 44:653–4670

    Article  Google Scholar 

  • Foye WO (1991) Prinicipil di Chemico Farmaceutica. Piccin, Padova, p 416

    Google Scholar 

  • Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, Custeau D, Bourdeau C, Geerts L, Cai SX, Drewe J, Labrecque D, Kasibhatla S, Tseng B (2004) Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol Cancer Ther 3:1375–1383

    CAS  PubMed  Google Scholar 

  • Green GR, Evans, JM, Vong AK (1995) Pyrans and their benzo derivatives synthesis. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 5. Pergamon Press, Oxford, UK. p 469.

  • Guo Z, Zhu W, Tian H (2012) Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors. Chem Commun 48:6073–6084

    Article  CAS  Google Scholar 

  • Hatakeyama S, Ochi N, Numata H, Takano S (1988) A new route to substituted 3- methoxycarbonyldihydropyrans; enantioselective synthesis of (–)-methyl elenolate. J Chem Soc Chem Commun 1988:1202–1204

    Article  Google Scholar 

  • Hu ZP, Wang WJ, Yin XG, Zhang XJ, Yan M (2012) Enantioselective synthesis of 2-amino-4H-pyrans via the organocatalytic cascade reaction of malononitrile and α-substituted. Tetrahedron 23:461–467

    Article  CAS  Google Scholar 

  • Kang S, Cooper G, Dunne SF, Luan CH, Surmeier DJ, Silverman RB (2013) Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyridine mimics. Bioorg Med Chem 21:4365–4373

    Article  CAS  PubMed  Google Scholar 

  • Kappe CO (1998) 4-Aryldihydropyrimidines via the biginelli condensation: aza-analogs of nifedipine-type calcium channel modulators. Molecules 3:1–9

    Article  CAS  Google Scholar 

  • Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, gourdeau H, Tseng B, Kasibhatla S, Cai SX (2008) Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure–activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. J Med Chem 51:417–423

    Article  CAS  PubMed  Google Scholar 

  • Kemnitzer W, Drewe J, Jiang S, Zhang H, Wang Y, Zhao J, Jia S, Herich J, Labreque D, Storer R, Meerovitch K, Bouffard D, Rej R, Denis R, Blais C, Lamothe S, Attardo G, Gourdeau H, Tseng B, Kasibhatla S, Cai SX (2004) Discovery of 4-aryl-4Hchromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J Med Chem 47:6299–6310

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Reddy VB, Sharad S, Dude U, Kapur S (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 44:3805–3809

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Kim SM, Kim JY, Kim YK, Yoon SS (2010) Red fluorescent organic light-emitting diodes using modified pyran-containing DCJTB derivatives. Bull Korean Chem Soc 31:2884–2888

    Article  CAS  Google Scholar 

  • Lin Z, Zhang X, You X, Gao Y (2012) Facile cleavage of C–C bond: conversion of pyran derivative to 1,3-oxazin derivative. Tetrahedron 68:6759–6764

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  • Narendar Reddy T, Ravinder M, Bagul P, Ravikanti K, Bagul C, Nanubolu JB, Srinivas K, Banerjee SK, Jayathirtha Rao V (2014) Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur J Med Chem 71:53–66

    Article  CAS  Google Scholar 

  • Narender P, Gangadasu B, Ravinder M, Srinivas U, Swamy GYSK, Ravi kumar K, Jayathirtha Rao V (2006) Baylis–Hillman adducts between pyridine carboxaldehyde derivatives and cyclic enones. Tetrahedron 62:954–959

    Article  CAS  Google Scholar 

  • Narender P, Srinivas U, Ravinder M, Ramesh Ch, Rao BA, Harakishore K, Gangadasu B, Murthy USN, Jayathirtha Rao V (2006) Synthesis of multisubstituted quinolines from Baylis–Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg Med Chem 14:4600–4609

    Article  CAS  PubMed  Google Scholar 

  • Pavan Kumar ChNSS, Parida DK, Santhoshi A, Kota AK, Sridhar B, Jayathirtha Rao V (2011) Synthesis and biological evaluation of tetrazole containing compounds as possible anticancer agents. Med Chem Comm 2:486–492

    Article  CAS  Google Scholar 

  • Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooperlc JNA (1993) Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304

    Article  CAS  Google Scholar 

  • Quintela JM, Peinador C, Moreira MJ (1995) A novel synthesis of pyrano[2,3-d]pyrimidine derivatives. Tetrahedron 51:5901–5912

    Article  CAS  Google Scholar 

  • Ramasatyaveni G, Jagadeesh Kumar G, Mahender B, Sridhar B, Jayathirtha Rao V, Das A (2016) 2-Azetidinones: Synthesis and biological evaluation as potential antibreast cancer agents. Eur J Med Chem 124:544–558

    Article  CAS  Google Scholar 

  • Ravinder M, Mahendar B, Saidulu M, Hamsini KV, Narendar Reddy T, Rohit Ch, Sanjay Kumar B, Srinivas K, Jayathirtha Rao V (2012) Synthesis and evaluation of novel 2-pyridone derivatives as inhibitors of phosphodiesterase3 (PDE3): A target for heart failure and platelet aggregation. Bioorg Med Chem Lett 22:6010–6015

    Article  CAS  PubMed  Google Scholar 

  • Ravinder M, Sadhu PS, Jayathirtha Rao V (2009) Simple, facile and one-pot conversion of the Baylis–Hillman acetates into 3,5,6-trisubstituted-2-pyridones. Tetrahedron Lett 50:4229–4232

    Article  CAS  Google Scholar 

  • Ravinder M, Sadhu PS, Santhoshi A, Narender P, Swamy GYSK, Ravikumar D, Jayathirtha Rao V (2010) Synthesis of new aminonicotinate derivatives from acetylated Baylis-Hillman adducts and enamino esters via a consecutive [3+3]-annulation protocol. Synthesis pp 573–578

  • Singh V, Batra S (2008) Advances in the Baylis–Hillman reaction-assisted synthesis of cyclic frameworks. Tetrahedron 64:4511–4574

    Article  CAS  Google Scholar 

  • Smith III AB, Corbett RM, Pettit GR, Chapuis JC, Schmidt JM, Hamel E, Jung MK (2002) Synthesis and biological evaluation of a spongistatin AB-spiroketal analogue. Bioorg Med Chem Lett 12:2039–2042

    Article  CAS  PubMed  Google Scholar 

  • Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A (1998) Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem 41:787–797

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST (2000) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10:541–545

    Article  CAS  PubMed  Google Scholar 

  • Urbahns K, Horváth E, Stasch JP, Mauler F (2003) 4-Phenyl-4H-pyrans as IKca channel blockers. Bioorg Med Chem Lett 13:2637–2639

    Article  CAS  PubMed  Google Scholar 

  • Wyatt PG, Coomber BA, Evans DN, Jack TI, Fulton HE, Wonacott AJ, Colman P, Varghese J (2001) Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorg Med Chem Let 11:669–673

    Article  CAS  Google Scholar 

  • Yadav LDS, Srivastava VP, Patel R (2008) Ionic liquid [Hmim]HSO4-promoted one-pot oxidative conjugate addition of sulfur-centred nucleophiles to Baylis–Hillman adducts. Tetrahedron Lett 49:3142–3146

    Article  CAS  Google Scholar 

  • Zhang YL, Chen BZ, Zheng KQ, Xu ML, Lei XH (1982) Chinese Acta Pharmaceutica Sinica, 17. Chem Abstr 96:135383e

    Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-Indian Institute of Chemical Technology for encouragement. V.J.R. thanks, CSC-0108-ORIGIN project, and  CSIR-New Delhi for Emeritus Scientist honor. T.N.R. and R.B.P. acknowledge the CSIR-UGC New Delhi, while M.R. and P.S. acknowledge the CSIR, New Delhi for research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thatikonda Narendar Reddy, C. Ganesh Kumar or Vaidya Jayathirtha Rao.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, T.N., Ravinder, M., Bikshapathi, R. et al. Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents. Med Chem Res 26, 2832–2844 (2017). https://doi.org/10.1007/s00044-017-1982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1982-y

Keywords

Navigation