Skip to main content

Advertisement

Log in

Prostaglandin analogues: current treatment option for glaucoma

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Glaucoma is a progressive optic neuropathy and is the world’s second leading cause of blindness. It is a multifactorial disease that is etiologically complex where elevated intraocular pressure in the eye is the major risk factor. Prostaglandin analogues are the first-line drugs in today’s glaucoma therapy. These are 20 carbon atom naturally occurring fatty acid derivatives biosynthesized from arachidonic acid. They involve COX pathway where arachidonic acid interacts with COX in the presence of oxygen and heme and produces PGG2. It is a cyclic endoperoxide with very short half life and generates PGH2 through its peroxidase activity. PGH2 further produces PGE2 in the presence of PGE isomerase, PGD2 by the actions of isomerases or glutathione-S-transferase and PGF by an endoperoxide reductase system. Various synthetic analogues of these naturally occurring prostaglandins have been discussed in the current review which act by decreasing the intraocular pressure through a pathway which increases the uveoscleral and trabecular outflow. The tromethamine salt of PGF was the first prostaglandin analogue used as an antiglaucoma agent, and later on it was replaced by various FP (latanoprost, bimatoprost, travoprost, tafluprost, etc.), EP (butaprost) and DP (BW245C, ZK118182, AL 6598) analogues. Most of the drugs are prodrugs and after hydrolysis give their respective acids in the aqueous humor. Inspite of the side effects, these are widely used alone or in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achim H, Krauss P, Wiederholt M, Strum A, Woodward DF (1997) Prostaglandin effects on the contractility of bovine trabecular meshwork and ciliary muscle. Exp Eye Res 64:447–453

    Article  Google Scholar 

  • Abraham NS, El-Serag HB, Hartman C, Richardson P, Deswal A (2007) Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther 25:913–924

    Article  CAS  PubMed  Google Scholar 

  • Arthur S, Cantor LB (2011) Update on the role of alpha-agonists in glaucoma management. Exp Eye Res 93:271–283

    Article  CAS  PubMed  Google Scholar 

  • Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radical Biol Med 45:367–376

    Article  CAS  Google Scholar 

  • Awasthi P, Srivastava SN (1965) Role of oral glycerol in glaucoma. Br J Ophthalmol 49:660–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AC, Chan MF, Chen G, Gac T, Garst ME, Gluchowski C, Kaplan LJ, Protzman CE, Roof MB, Sachs G, Wheeler LA, Williams LS, Woodward DF (1994) Studies on a novel series of acyl ester prodrugs of prostaglandin F. Br J Ophthalmol 78:560–567

    Article  Google Scholar 

  • Bito LZ (1997) Prostaglandins: a new approach to glaucoma management with a new, intriguing side effect. Surv Ophthalmol 41:S1–S14

    Article  PubMed  Google Scholar 

  • Blanco AA, Burr J (2006) The rising cost of glaucoma drugs. Br J Ophthalmol 90:130–131

    Article  Google Scholar 

  • Boulton LT, Brick D, Fox ME, Jackson M, Lennon JC, McCague R, Parkin N, Rhodes D, Ruecroft G (2002) Synthesis of the potent antiglaucoma agent, travoprost. Org Process Res Dev 6:138–145

    Article  CAS  Google Scholar 

  • Camras CB, Wax MB, Ritch R, Weinreb R, Robin AL, Higginbotham EJ, Lustgarten J, Stewart WC, Sherwood M, Krupin T, Wilnesky J, Cioffi GA, Katz LJ, Schumer RA, Kaufman PL, Minckler D, Zimmerman T, Stjernschantz J (1998) The United States Latanoprost study group. Latanoprost treatment for glaucoma: effects of treating for 1 year and of switching from timolol. Am J Ophthalmol 126:390–399

    Article  CAS  PubMed  Google Scholar 

  • Cantor LB, Hoop J, Morgan L, WuDunn D, Catoira Y, The bimatoprost–travoprost study group (2006) Intraocular pressure lowering efficacy of bimatoprost 0.03% and travoprost 0.004% in patients with glaucoma or ocular hypertension. Br J Ophthalmol 90:1370–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson AM, Chauhan BC, Lee AR, Leblanck RP (2000) The effect of brimonidine tartrate on retinal blood flow in patients with ocular hypertension. Am J Ophthalmol 129:279–301

    Article  Google Scholar 

  • Cheng JW, Cheng SW, Gao LD, Lu GC, Wei RL (2012) Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: A systematic review and meta-analysis. PLoS ONE 7:1–9

    Google Scholar 

  • Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins PW, Dajani EZ, Pappo R, Gasiecki AF, Bianchi RG, Woods EM (1983) Synthesis and gastric antisecretory properties of 4, 5-unsaturated derivatives of 15-deoxy-16-hydroxy-16-methylprostaglandin E1. J Med Chem 26:786–790

    Article  CAS  PubMed  Google Scholar 

  • Crowston JG, Lindsey JD, Morris CA, Wheeler L, Medeiros FA, Weinreb RN (2005) Effect of bimatoprost on intraocular pressure in prostaglandin FP receptor knockout mice. Invest Ophthalmol Vis Sci 46:4571–4577

    Article  PubMed  Google Scholar 

  • Dams I, Chodynski M, Krupa M, Pietraszek A, Zezula M, Cmoch P (2013) A novel convergent synthesis of the potent antiglaucoma agent travoprost. Tetrahedron 69:1634–1648

    Article  CAS  Google Scholar 

  • Day DG, Walters TR, Schwartz GF, Mundorf TK, Liu C, Schiffman RM, Bejanian M (2013) Bimatoprost 0.03% preservative-free ophthalmic solution versus bimatoprost 0.03% ophthalmic solution (Lumigan) for glaucoma or ocular hypertension: a 12-week, randomised, double-masked trial. Br J Ophthalmol 97:989–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Demailly P, Allaire C, Trinquand C (2001) Ocular hypotensive efficacy and safety of once daily carteolol alginate. Br J Ophthalmol 85:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diafas S, Day DG, Stewart JA, Stewart WC (2007) The use of dorzolamide versus other hypotensive agents to prevent glaucomatous progression. Ther Clin Risk Manag 3:725–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dragoli DR, Thompson LA, O’Brien J, Ellman JA (1999) Parallel synthesis of prostaglandin E1 analogues. J Comb Chem 1:534–539

    Article  CAS  PubMed  Google Scholar 

  • Dranceoc SM, Crichton A, Mills RP (1998) Comparison of the effect of latanoprost 0.005% and timolol 0.5% on the calculated ocular perfusion pressure in patients with normal-tension glaucoma. Am J Ophthalmol 125:585–592

    Article  Google Scholar 

  • Duff GR, Newcombe RG (1988) The 12-hour control of intraocular pressure on carteolol 2% twice daily. Br J Ophthalmol 72:890–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Hellberg MR, Sharif NA, McLaughlin MA, Williams GW, Scott D, Wallace T (2009) Discovery of 13-oxa prostaglandin analogs as antiglaucoma agents: synthesis and biological activity. Bioorg Med Chem 17:576–584

    Article  CAS  PubMed  Google Scholar 

  • Gabelt BT, Hennes EA, Bendel MA, Constant CE, Okka M, Kaufman PL (2009) Prostaglandin subtype-selective and non-selective IOP-lowering comparison in monkeys. J Ocul Pharmacol Ther 25:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganias F, Mapstone R (1957) Miotics in closed-angle glaucoma. Br J Ophthalmol 59:205–206

    Article  Google Scholar 

  • Garnock-Jones KP (2014) Ripasudil: first global approval. Drugs 74:2211–2215

    Article  CAS  PubMed  Google Scholar 

  • Geyer O, Man O, Weintraub M, Silver DM (2001) Acute effect of latanoprost on pulsatile ocular blood flow in normal eyes. Am J Ophthalmol 131:198–202

    Article  CAS  PubMed  Google Scholar 

  • Goldberg I (2002) Drugs for glaucoma. Aust Prescr 25:142–146

    Article  Google Scholar 

  • Grieshaber MC, Flammer J (2009) Introduction. Surv Ophthalmol 52:S99–S100

    Article  Google Scholar 

  • Hariharan S, Minocha M, Mishra GP, Pal D, Krishna R, Mitra AK (2009) Interaction of ocular hypotensive agents (PGF2α) analogs (bimatoprost, latanoprost, and tavoprost) with MDR efflux pumps on the rabbit cornea. J Ocul Pharmacol Ther 25:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartenbaum D (1996) The efficacy of dorzolamide, a topical carbonic anhydrase inhibitor, in combination with timolol in the treatment of patients with open-angle glaucoma and ocular hypertension. Clin Ther 18:460–465

    Article  CAS  PubMed  Google Scholar 

  • Hellberg MR, Conrow RE, Sharif NA, McLaughlin MA, Bishop JE, Crider JY, Dean WD, DeWolf KA, Pierce DR, Sallee VL, Selliah RD, Severns BS, Sproull SJ, Williams GW, Zinkea PW, Klimkoa PG (2002) 3-Oxa-15-cyclohexyl prostaglandin DP receptor agonists as topical antiglaucoma agents. Bioorg Med Chem 10:2031–2049

    Article  CAS  PubMed  Google Scholar 

  • http://www.ncbi.nlm.nih.gov/pubmed/25880207

  • https://clinicaltrials.gov/ct2/show/NCT00706927

  • https://clinicaltrials.gov/ct2/show/NCT01068964?term=Bimatoprost+0.03%25+Timolol+maleate+0.5%25+allergan&rank=6

  • https://clinicaltrials.gov/ct2/show/NCT01170884?term=Bimatoprost+0.03%25+Brimonidine+0.2%25&rank=1

  • https://clinicaltrials.gov/ct2/show/NCT01749904?term=NCT01749904&rank=1

  • https://clinicaltrials.gov/ct2/show/NCT01789736?term=PG286+Ophthalmic+solution&rank=1

  • https://clinicaltrials.gov/ct2/show/NCT00572455?term=NCT00572455&rank=1

  • https://clinicaltrials.gov/ct2/show/NCT00672997?term=Timolol+and+Travoprost&rank=6

  • https://clinicaltrials.gov/ct2/show/NCT00572455?term=PF-04217329&rank=1

  • Husain S, Yates PW, Crosson CE (2008) Latanoprost-induced changes in rat intraocular pressure: direct or indirect? J Ocul Pharmacol Ther 24:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impagnatiello F, Borghi V, Gale DC, Batugo M, Guzzetta M, Brambilla S, Carreiro ST, Chong WKM, Prasanna G, Chiroli V, Ongini E, Krauss AHP (2011) A dual acting compound with latanoprost amide and nitric oxide releasing properties shows ocular hypotensive effects in rabbits and dogs. Exp Eye Res 93:243–249

    Article  CAS  PubMed  Google Scholar 

  • Jenkins DW, Humphrey PPA, Coleman RA (2007) Agents acting on prostanoid receptors. In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery. Wiley, India, pp 265–315

    Google Scholar 

  • Joyce PW, Mills KB, Richardson T, Mawer GE (1989) Equivalence of conventional and sustained release oral dosage formulations of acetazolamide in primary open angle glaucoma. Br J Clin Pharmacol 27:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabashima K, Narumiya S (2003) The DP receptor, allergic inflammation and asthma. PLEFA 69:187–194

    CAS  Google Scholar 

  • Kadam RS, Jadhav G, Ogidigben M, Kompella UB (2011) Ocular pharmacokinetics of dorzolamide and brinzolamide after single and multiple topical dosing: implications for effects on ocular blood flow. ASPET 39:1529–1537

    CAS  Google Scholar 

  • Kanski JJ (1968a) Carbonic anhydrase inhibitors and osmotic agents in glaucoma. Br J Ophthalmol 52:642–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanski JJ (1968b) Miotic. Br J Ophthalmol 521:936–937

    Article  Google Scholar 

  • Kitaoka Y, Kumai T, Lam TT, Kuribayashi K, Isenoumi K, Munemasa Y et al (2004) Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA-induced neurotoxicity in the rat retina. Brain Res 1018:111–118

    Article  CAS  PubMed  Google Scholar 

  • Krauss AHP, Impagnatiello F, Toris CB, Gale DC, Prasanna G, Borghi V, Chiroli V, Chong WKM, Carreiro ST, Ongini E (2011) Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating Prostaglandin F agonist, in preclinical models. Exp Eye Res 93:250–255

    Article  CAS  PubMed  Google Scholar 

  • Krieglstein GK, Novac GD, Voepel E, Schwarzbach G, Lange U, Schunck KP, Clue J, Glavinos EP (1987) Levobunolol and metipranolol: comparative ocular hypotensive efficacy, safety, and comfort. Br J Ophthalmol 71:250–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Abbas AK, Fausto N (2005) Acute and chronic inflammation. In: Perkins JA (ed) Robbins and cotran pathologic basis of disease. Elsevier Inc, China, pp 68–70

  • Kwitko ML, Costenbader FD (1962) Urea therapy in glaucoma due to secondary hyphema. Can Med Assoc J 86:447–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee PY, Shoo H, Xu L, Qu CK (1988) The effect of prostaglandin F2αon intraocular pressure in normotensive human subjects. Invest Ophthalmol Vis Sci 29:1474–1477

    CAS  PubMed  Google Scholar 

  • Liang Y, Li C, Guzman VM, Chang WW, Evinger AJ, Pablo JV, Woodward DF (2004) Upregulation of orphan nuclear receptor Nur77 following PGF, bimatoprost, and butaprost treatments. Essential role of a protein kinase C pathway involved in EP2 receptor activated Nur77 gene transcription. Br J Pharmacol 142:737–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majsterek I, Malinowska K, Stanczyk M, Kowalski M, Blaszczyk J, Kurowska AK, Kaminska A, Szaflik J, Szaflik JP (2011) Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 90:231–237

    Article  CAS  PubMed  Google Scholar 

  • Mark R, Hellberg MR, McLaughlin MA, Sharif NA, DeSantis L, Dean TR, Kyba EP, Bishop JE, Klimko PG, Zinke PW, Selliah RD, Barnes G, DeFaller J, Kothe A, Landry T, Sullivan EK, Andrew R, Davis AA, Silver L, Bergamini MVW, Robertson S, Weiner AL, Sallee VL (2002) Identification and characterization of the ocular hypotensive efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist, and AL-6598, a DP prostaglandin receptor agonist. Surv Opthalmol 47:S13–S33

    Article  Google Scholar 

  • Maruyama K, Tsuchisaka A, Sakamoto J, Shirato S, Goto H (2013) Incidence of deepening of upper eyelid sulcus after topical use of trafluprost ophthalmic solution in Japanese patients. Clin Ophthalmol 7:1441–1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsugi T, Kageyama M, Nishimura K, Giles H, Shirasawa E (1995) Selective prostaglandin D2 receptor stimulation elicits ocular hypotensive effects in rabbits and cats. Eur J Pharmacol 275:245–250

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Mori N, Nakano T, Sasakura H, Matsugi T, Harab H, Morizawaa Y (2004) Synthesis of the highly potent prostanoid FP receptor agonist, AFP-168: a novel 15-deoxy-15,15-difluoroprostaglandin F derivative. Tetrahedron Lett 45:1527–1529

    Article  CAS  Google Scholar 

  • Matsuo T, Cynader MS (1992) Localisation of prostaglandin F2, and E2 binding sites in the human eye. Br J Ophthalmol 76:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo T, Cynader MS (1993) The EP2 receptor is the predominant prostanoid receptor in the human ciliary muscle. Br J Ophthalmol 77:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarieh M, Flammer J (2007) Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol 52:S174–S178

    Article  PubMed  Google Scholar 

  • Nixon DR, Simonyi S, Bhogal M, Bhogal M, Sigouin CS, Crichton AC, Discepola M, Hutnik CM, Yan DB (2012) An observational study of bimatoprost 0.01% in treatment-naïve patients with primary open angle glaucoma or ocular hypertension: the clear trial. Clin Ophthalmol 6:2097–2103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno T, Oku H, Sugiyama T, Ikeda T (2006) Glutamate level in optic nerve head is increased by artificial elevation of intraocular pressure in rabbits. Exp Eye Res 82:465–470

    Article  CAS  PubMed  Google Scholar 

  • Ong T, Chia A, Nischal KK (2003) Latanoprost in port wine stain related paediatric glaucoma. Br J Ophthalmol 87:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poyer JF, Millar C, Kaufman PL (1995) Prostaglandin F2α effects on isolated rhesus monkey ciliary muscle. Invest Ophthamol Vis Sci 36:2461–2465

    CAS  Google Scholar 

  • Pozarowska D (2010) Safety and tolerability of tafluprost in treatment of elevated intraocular pressure in open-angle glaucoma and ocular hypertension. Clin Ophthalmol 4:1229–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna G, Carreiro S, Anderson S, Gukasyan H, Sartnurak S, Younis H, Gale D, Xiang C, Wells P, Dinh D, Almaden C, Fortner J, Toris C, Niesman M, Lafontaine J, Krauss A (2011) Effect of PF-04217329 a prodrug of a selective prostaglandin EP2 agonist on intraocular pressure in preclinical models of glaucoma. Exp Eye Res 93:256–264

    Article  CAS  PubMed  Google Scholar 

  • Ramdas WD, Velde N, Tischa JM, Roger CW (2009) Wolfs evaluation of risk of falls and orthostatic hypotension in older, long-term topical beta-blocker users. Graefes Arch Clin Exp Ophthalmol 247:1235–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Reidy JJ, Zarzour J, Thompson HW, Beuerman RW (1994) Effect of topical blockers on corneal epithelial wound healing in the rabbit. Br J Ophthalmol 78:377–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimer R, Heim HK, Mualiem R, Odes HS, Sewing KF (1992) Effects of EP-receptor subtype specific agonists and other prostanoids on adenylate cyclase activity of duodinal epithelial cells. Prostaglandins 44:485–493

    Article  CAS  PubMed  Google Scholar 

  • Remo Susanna R, Paul Chew P, Yoshiaki Kitazawa Y (2002) Current status of prostaglandin therapy: latanoprost and unoprostone. Surv Opthalmol 47:S97–S104

    Article  Google Scholar 

  • Resul B, Stjernschantz J, No K, Liljebris C, Selen G, Astin M, Karlsson M, Bito LZ (1993) Phenyl-substituted prostaglandins: potent and selective antiglaucoma agents. J Med Chem 36:243–248

    Article  CAS  PubMed  Google Scholar 

  • Robin AL (1996) Ocular hypotensive efficacy and safety of a comined formulation of betaxolol and pilocarpine. Trans Am Ophthalmol Soc XCIV:89–103

  • Robin AL, Ritch R, Shin D, Smythe B, Mundorf T, Lehmann RP (1995) Topical apraclonidine hydrochloride in eyes with poorly controlled glaucoma. Trans Am Ophthalmol Soc 93:421–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romando JH (1970) Double-blind cross-over comparison of aceclidine and pilocarpine in open-angle glaucoma. Br J Ophthalmol 54:510–521

    Article  Google Scholar 

  • Schultz C (2011) Tafluprost for the reduction of interocular pressure in open angle glaucoma and ocular hypertension. Ophthalmol Eye Dis 3:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharif NA, Davis TL, Williams GW (2005) Ocular hypotensive DP-Class prostaglandin receptor affinities determined by quantitative autoradiography on human eye sections. J Ocul Pharmacol Ther 21:121–132

    Article  CAS  PubMed  Google Scholar 

  • Soltau JB, Zimmerman JZ (2002) Changing paradigms in the medical treatment of glaucoma. Surv Opthalmol 47:S2–S5

    Article  Google Scholar 

  • Takami A, Iwakubo M, Okada Y, Kawata T, Odai H, Takahashi N, Shindo K, Kimura K, Tagami Y, Miyake M, Fukushima K, Inagaki M, Amano M, Kaibuchi K, Iijima H (2004) Design and synthesis of Rho kinase inhibitors (I). Bioorg Med Chem 12:2115–2137

    Article  CAS  PubMed  Google Scholar 

  • Tani K, Naganawa A, Ishida A, Egashira H, Sagawa K, Harada H, Ogawa M, Maruyama T, Ohuchida S, Nakai H, Kondo K, Toda M (2001) Design and synthesis of a highly selective EP2 receptor agonist. Bioorg Med Chem 11:2025–2028

    Article  CAS  Google Scholar 

  • Tani K, Naganawa A, Ishida A, Sagawa K, Harada H, Ogawa M, Maruyama T, Ohuchi S (2002) Development of a highly selective EP2-receptor agonist. Part 1: identification of 16-hydroxy-17,17-trimethylene PGE2 derivatives. Bioorg Med Chem 10:1093–1106

    Article  CAS  PubMed  Google Scholar 

  • Tripathi KD (2008) Prostaglandins, leukotrienes (ecosanoids) and platelet activating factor. Essentials of medical pharmacology. Jaypee Brothers Medical Publishers Pvt. Ltd., India, pp 173–183

    Chapter  Google Scholar 

  • Tsumura T, Yoshikawa K, Suzumura H, Kimura I, Takeda R (2012) Bimatoprost ophthalmic solution 0.03% lowered intraocular pressure of normal-tension glaucoma with minimal adverse events. Clin Ophthalmol 6:1547–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I (2015) Towards axonal regeneration and neuroprotection in glaucoma: rho kinase inhibitors as promising therapeutics. Prog Neurobiol 131:105–119

    Article  PubMed  Google Scholar 

  • Watson PG, Barnett MF, Parker V, Haybittle J (2001) A 7 year prospective comparative study of three topical α blockers in the management of primary open angle glaucoma. Br J Ophthalmol 85:961–968

    Article  Google Scholar 

  • Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720

    Article  PubMed  Google Scholar 

  • Weinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL (2002) Effects of prostaglandins on the aqueous humor outflow pathways. Surv Opthalmol 47:S53–S64

    Article  Google Scholar 

  • Weissman SS, Asbell PA (1990) Effects of topical timolol (0 5%) and betaxolol (0 5%) on corneal sensitivity. Br J Ophthalmol 74:409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitson JT (2002) Travoprost—a new prostaglandin analogue for the treatment of glaucoma. Expert Opin Pharmacother 3:965–977

    Article  CAS  PubMed  Google Scholar 

  • Williams HP (1974) Comparison of the accommodative effects of Carbachol and Pilocarpine with reference to accommodative esotropia. Br J Ophthalmol 58:668–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DA, Lemke TL (2005) Nonsteroidal anti-inflammatory agent. In: Lemke TL (ed) Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins, New York, pp 754–757

    Google Scholar 

  • Woodward DF, Spada CS, Hawley SB, Williams LS, Protzman CE, Nieves AL (1993) Further studies on ocular responses to DP receptor stimulation. Eur J Pharmacol 230:327–333

    Article  CAS  PubMed  Google Scholar 

  • Woodward DF, Liang Y, Krauss AHP (2008) Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol 153:410–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright DH, Francois Nantel F, Metters KM, Anthony W, Hutchinson F (1999) A novel biological role for prostaglandin D is suggested by distribution studies of the rat DP prostanoid receptor. Eur J Pharmacol 377:101–115

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Araldi GL, Zhao Z, Brugger N, Karra S, Fischerb D, Palmer E (2007) Discovery of novel prostaglandin analogs of PGE2 as potent and selective EP2 and EP4 receptor agonists. Bioorg Med Chem 17:4323–4327

    Article  CAS  Google Scholar 

  • Zhao X, Pearson KE, Stephan DA, Russell P (2003) Effects of prostaglandin analogues on human ciliary muscle and trabecular meshwork cells. Invest Ophthalmol Vis Sci 44:1945–1952

    Article  PubMed  Google Scholar 

  • Zhao Z, Araldi GL, Xiao Y, Reddy AP, Liao Y, Karra S, Brugger N, Fischerb D, Palmer E (2007) Synthesis and evaluation of novel pyrazolidinone analogs of PGE2 as EP2 and EP4 receptors agonists. Bioorg Med Chem 17:6572–6575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thanks All India Council of Technical Education and Department of Science and Technology, New Delhi for the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Piplani.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piplani, P., Aggarwal, D., Abbhi, V. et al. Prostaglandin analogues: current treatment option for glaucoma. Med Chem Res 25, 1031–1048 (2016). https://doi.org/10.1007/s00044-016-1563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1563-5

Keywords

Navigation