Skip to main content

Advertisement

Log in

Prostanoid receptor agonists for glaucoma treatment

  • Forefront Review
  • Organizer :Tetsuya Yamamoto, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Intraocular pressure reduction is the only available and evidence-based medical therapy for glaucoma. Currently, the first-line eye drops are prostaglandin analogues including latanoprost, travoprost, bimatoprost, and tafluprost. These drugs stimulate intraocular prostanoid false positive (FP) receptors and reduce intraocular pressure by increasing mainly uveoscleral aqueous outflow. For 2 decades since latanoprost was launched, no drug has been comparable in its efficacy. In 2018, a prostanoid EP2 agonist, omidenepag, was launched in Japan. Current FP agonists and EP2 agonists indicate comparable intraocular pressure reduction by stimulating prostanoid FP or EP2 receptors. However, their safety profiles are quite different because of the differences between the intracellular signaling pathways through their own receptors. Including these commercially available FP and EP2 receptor agonists, prostanoid receptors have a large potential to control intraocular pressure. In this review I will trace the history and development of FP and EP2 receptor agonists from their original function, and explain their potential as first-line drugs including elucidation of their efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saeki T, Ota T, Aihara M, Araie M. Effects of prostanoid EP agonists on mouse intraocular pressure. Invest Ophthalmol Vis Sci. 2009;50:2201–8.

    Article  PubMed  Google Scholar 

  2. Ota T, Aihara M, Saeki T, Narumiya S, Araie M. The effects of prostaglandin analogues on prostanoid EP1, EP2, and EP3 receptor-deficient mice. Invest Ophthalmol Vis Sci. 2006;47:3395–9.

    Article  PubMed  Google Scholar 

  3. Ota T, Aihara M, Narumiya S, Araie M. The effects of prostaglandin analogues on IOP in prostanoid FP-receptor-deficient mice. Invest Ophthalmol Vis Sci. 2005;46:4159–63.

    Article  PubMed  Google Scholar 

  4. Hellberg MR, McLaughlin MA, Sharif NA, DeSantis L, Dean TR, Kyba EP, et al. Identification and characterization of the ocular hypotensive efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist, and AL-6598, a DP prostaglandin receptor agonist. Surv Ophthalmol. 2002;47(Suppl 1):S13-33.

    Article  PubMed  Google Scholar 

  5. Aihara M, Lu F, Kawata H, Tanaka Y, Yamamura K, Odani-Kawabata N, et al. Pharmacokinetics, safety, and intraocular pressure-lowering profile of omidenepag isopropyl, a selective, nonprostaglandin, prostanoid EP2 receptor agonist, in healthy Japanese and Caucasian volunteers (phase I study). J Ocul Pharmacol Ther. 2019;35:542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aihara M, Lu F, Kawata H, Iwata A, Liu K, Odani-Kawabata N, et al. Phase 2, randomized, dose-finding studies of omidenepag isopropyl, a selective EP2 agonist, in patients with primary open-angle glaucoma or ocular hypertension. J Glaucoma. 2019;28:375–85.

    Article  PubMed  Google Scholar 

  7. Kirihara T, Taniguchi T, Yamamura K, Iwamura R, Yoneda K, Odani-Kawabata N, et al. Pharmacologic characterization of omidenepag isopropyl, a novel selective EP2 receptor agonist, as an ocular hypotensive agent. Invest Ophthalmol Vis Sci. 2018;59:145–53.

    Article  CAS  PubMed  Google Scholar 

  8. Iwamura R, Tanaka M, Okanari E, Kirihara T, Odani-Kawabata N, Shams N, et al. Identification of a selective, non-prostanoid EP2 receptor agonist for the treatment of glaucoma: omidenepag and its prodrug omidenepag isopropyl. J Med Chem. 2018;61:6869–91.

    Article  CAS  PubMed  Google Scholar 

  9. Fuwa M, Toris CB, Fan S, Taniguchi T, Ichikawa M, Odani-Kawabata N, et al. Effects of a novel selective EP2 receptor agonist, omidenepag isopropyl, on aqueous humor dynamics in laser-induced ocular hypertensive monkeys. J Ocul Pharmacol Ther. 2018;34:531–7.

    Article  CAS  PubMed  Google Scholar 

  10. Klimko PG, Sharif NA. Discovery, characterization and clinical utility of prostaglandin agonists for the treatment of glaucoma. Br J Pharmacol. 2019;176:1051–8.

    Article  CAS  PubMed  Google Scholar 

  11. Aptel F, Denis P. Balancing efficacy and tolerability of prostaglandin analogues and prostaglandin-timolol fixed combinations in primary open-angle glaucoma. Curr Med Res Opin. 2011;27:1949–58.

    Article  CAS  PubMed  Google Scholar 

  12. Ambache N. Irin, a smooth-muscle contracting substance present in rabbit iris. J Physiol. 1955;129:65–6.

    Article  CAS  PubMed  Google Scholar 

  13. Anggard E, Samuelsson B. Smooth muscle stimulating lipids in sheep iris. The identification of prostaglandin F 2a. Prostaglandins and related factors 21. Biochem Pharmacol. 1964;13:281–3.

    Article  CAS  PubMed  Google Scholar 

  14. Eakins KE, Whitelocke RA, Bennett A, Martenet AC. Prostaglandin-like activity in ocular inflammation. Br Med J. 1972;3:452–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bito LZ, Draga A, Blanco J, Camras CB. Long-term maintenance of reduced intraocular pressure by daily or twice daily topical application of prostaglandins to cat or rhesus monkey eyes. Invest Ophthalmol Vis Sci. 1983;24:312–9.

    CAS  PubMed  Google Scholar 

  16. Camras CB, Bito LZ. Reduction of intraocular pressure in normal and glaucomatous primate (Aotus trivirgatus) eyes by topically applied prostaglandin F2 alpha. Curr Eye Res. 1981;1:205–9.

    Article  CAS  PubMed  Google Scholar 

  17. Camras CB, Bito LZ, Eakins KE. Reduction of intraocular pressure by prostaglandins applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci. 1977;16:1125–34.

    CAS  PubMed  Google Scholar 

  18. Camras CB, Siebold EC, Lustgarten JS, Serle JB, Frisch SC, Podos SM, et al. Maintained reduction of intraocular pressure by prostaglandin F2 alpha-1-isopropyl ester applied in multiple doses in ocular hypertensive and glaucoma patients. Ophthalmology. 1989;96:1329–36; discussion 36–7.

    Article  CAS  PubMed  Google Scholar 

  19. Camras CB, Schumer RA, Marsk A, Lustgarten JS, Serle JB, Stjernschantz J, et al. Intraocular pressure reduction with PhXA34, a new prostaglandin analogue, in patients with ocular hypertension. Arch Ophthalmol. 1992;110:1733–8.

    Article  CAS  PubMed  Google Scholar 

  20. Fujimoto N, Zhao C, Shichi H. The effects of prostaglandins E2 and F2 alpha on porcine ciliary muscle cells in culture. Curr Eye Res. 1995;14:1155–63.

    Article  CAS  PubMed  Google Scholar 

  21. Nilsson SF, Drecoll E, Lutjen-Drecoll E, Toris CB, Krauss AH, Kharlamb A, et al. The prostanoid EP2 receptor agonist butaprost increases uveoscleral outflow in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 2006;47:4042–9.

    Article  PubMed  Google Scholar 

  22. Schachar RA, Raber S, Courtney R, Zhang M. A phase 2, randomized, dose-response trial of taprenepag isopropyl (PF-04217329) versus latanoprost 0.005% in open-angle glaucoma and ocular hypertension. Curr Eye Res. 2011;36:809–17.

    Article  CAS  PubMed  Google Scholar 

  23. Duggan S. Omidenepag isopropyl ophthalmic solution 0.002%: first global approval. Drugs. 2018;78:1925–9.

    Article  PubMed  Google Scholar 

  24. Liang Y, Li C, Guzman VM, Evinger AJ 3rd, Protzman CE, Krauss AH, Woodward DF. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression. J Biol Chem. 2003;278:27267–77.

    Article  CAS  PubMed  Google Scholar 

  25. Woodward DF, Regan JW, Lake S, Ocklind A. The molecular biology and ocular distribution of prostanoid receptors. Surv Ophthalmol. 1997;41(Suppl 2):S15-21.

    Article  PubMed  Google Scholar 

  26. Toris CB, Camras CB, Yablonski ME. Effects of PhXA41, a new prostaglandin F2 alpha analog, on aqueous humor dynamics in human eyes. Ophthalmology. 1993;100:1297–304.

    Article  CAS  PubMed  Google Scholar 

  27. Anthony TL, Pierce KL, Stamer WD, Regan JW. Prostaglandin F2 alpha receptors in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 1998;39:315–21.

    CAS  PubMed  Google Scholar 

  28. Biswas S, Bhattacherjee P, Paterson CA. Prostaglandin E2 receptor subtypes, EP1, EP2, EP3 and EP4 in human and mouse ocular tissues—a comparative immunohistochemical study. Prostaglandins Leukot Essent Fatty Acids. 2004;71:277–88.

    Article  CAS  PubMed  Google Scholar 

  29. Schlotzer-Schrehardt U, Zenkel M, Nusing RM. Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest Ophthalmol Vis Sci. 2002;43:1475–87.

    PubMed  Google Scholar 

  30. Takamatsu M, Hotehama Y, Goh Y, Mishima HK. Localization of prostaglandin E receptor subtypes in the ciliary body of mouse eye. Exp Eye Res. 2000;70:623–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lindsey JD, Kashiwagi K, Kashiwagi F, Weinreb RN. Prostaglandins alter extracellular matrix adjacent to human ciliary muscle cells in vitro. Invest Ophthalmol Vis Sci. 1997;38:2214–23.

    CAS  PubMed  Google Scholar 

  32. Li X, Liu G, Wang Y, Yu W, Xiang H, Liu X. A case hypersensitive to bimatoprost and dexamethasone. J Ocul Pharmacol Ther. 2011;27:519–23.

    Article  CAS  PubMed  Google Scholar 

  33. Kashiwagi K, Tsumura T, Tsukahara S. Long-term effects of latanoprost monotherapy on intraocular pressure in Japanese glaucoma patients. J Glaucoma. 2008;17:662–6.

    Article  PubMed  Google Scholar 

  34. Suzuki M, Mishima HK, Masuda K, Araie M, Kitazawa Y, Azuma I. Efficacy and safety of latanoprost eye drops for glaucoma treatment: a 1-year study in Japan. Jpn J Ophthalmol. 2000;44:33–8.

    Article  CAS  PubMed  Google Scholar 

  35. Tomita G, Araie M, Kitazawa Y, Tsukahara S. A three-year prospective, randomized and open comparison between latanoprost and timolol in Japanese normal-tension glaucoma patients. Eye (Lond). 2004;18:984–9.

    Article  CAS  Google Scholar 

  36. Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl 1):S69-84.

    Article  PubMed  Google Scholar 

  37. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.

    Article  CAS  PubMed  Google Scholar 

  38. Orzalesi N, Rossetti L, Invernizzi T, Bottoli A, Autelitano A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2000;41:2566–73.

    CAS  PubMed  Google Scholar 

  39. Cheng JW, Cai JP, Li Y, Wei RL. A meta-analysis of topical prostaglandin analogs in the treatment of chronic angle-closure glaucoma. J Glaucoma. 2009;18:652–7.

    Article  PubMed  Google Scholar 

  40. Markomichelakis NN, Kostakou A, Halkiadakis I, Chalkidou S, Papakonstantinou D, Georgopoulos G. Efficacy and safety of latanoprost in eyes with uveitic glaucoma. Graefes Arch Clin Exp Ophthalmol. 2009;247:775–80.

    Article  CAS  PubMed  Google Scholar 

  41. Sherwood M, Brandt J, Bimatoprost Study Group. Six-month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv Ophthalmol. 2001;45(Suppl 4):S361–8.

    Article  PubMed  Google Scholar 

  42. Tan P, Malhotra R. Oculoplastic considerations in patients with glaucoma. Surv Ophthalmol. 2016;61:718–25.

    Article  PubMed  Google Scholar 

  43. Sakata R, Sakisaka T, Matsuo H, Miyata K, Aihara M. Time course of prostaglandin analog-related conjunctival hyperemia and the effect of a nonsteroidal anti-inflammatory ophthalmic solution. J Glaucoma. 2016;25:e204–8.

    Article  PubMed  Google Scholar 

  44. Stjernschantz JW, Albert DM, Hu DN, Drago F, Wistrand PJ. Mechanism and clinical significance of prostaglandin-induced iris pigmentation. Surv Ophthalmol. 2002;47(Suppl 1):S162–75.

    Article  PubMed  Google Scholar 

  45. Giannico AT, Lima L, Russ HH, Montiani-Ferreira F. Eyelash growth induced by topical prostaglandin analogues, bimatoprost, tafluprost, travoprost, and latanoprost in rabbits. J Ocul Pharmacol Ther. 2013;29:817–20.

    Article  CAS  PubMed  Google Scholar 

  46. Filippopoulos T, Paula JS, Torun N, Hatton MP, Pasquale LR, Grosskreutz CL. Periorbital changes associated with topical bimatoprost. Ophthalmic Plast Reconstr Surg. 2008;24:302–7.

    Article  PubMed  Google Scholar 

  47. Jayaprakasam A, Ghazi-Nouri S. Periorbital fat atrophy—an unfamiliar side effect of prostaglandin analogues. Orbit. 2010;29:357–9.

    Article  PubMed  Google Scholar 

  48. Park J, Cho HK, Moon JI. Changes to upper eyelid orbital fat from use of topical bimatoprost, travoprost, and latanoprost. Jpn J Ophthalmol. 2011;55:22–7.

    Article  CAS  PubMed  Google Scholar 

  49. Taketani Y, Yamagishi R, Fujishiro T, Igarashi M, Sakata R, Aihara M. Activation of the prostanoid FP receptor inhibits adipogenesis leading to deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy. Invest Ophthalmol Vis Sci. 2014;55:1269–76.

    Article  CAS  PubMed  Google Scholar 

  50. Aihara M, Shirato S, Sakata R. Incidence of deepening of the upper eyelid sulcus after switching from latanoprost to bimatoprost. Jpn J Ophthalmol. 2011;55:600–4.

    Article  PubMed  Google Scholar 

  51. Maruyama K, Shirato S, Tsuchisaka A. Incidence of deepening of the upper eyelid sulcus after topical use of travoprost ophthalmic solution in Japanese. J Glaucoma. 2014;23:160–3.

    Article  PubMed  Google Scholar 

  52. Sakata R, Shirato S, Miyata K, Aihara M. Incidence of deepening of the upper eyelid sulcus in prostaglandin-associated periorbitopathy with a latanoprost ophthalmic solution. Eye (Lond). 2014;28:1446–51.

    Article  CAS  Google Scholar 

  53. Sakata R, Shirato S, Miyata K, Aihara M. Incidence of deepening of the upper eyelid sulcus on treatment with a tafluprost ophthalmic solution. Jpn J Ophthalmol. 2014;58:212–7.

    Article  CAS  PubMed  Google Scholar 

  54. Rabinowitz MP, Katz LJ, Moster MR, Myers JS, Pro MJ, Spaeth GL, et al. Unilateral prostaglandin-associated periorbitopathy: a syndrome involving upper eyelid retraction distinguishable from the aging sunken eyelid. Ophthalmic Plast Reconstr Surg. 2015;31:373–8.

    Article  PubMed  Google Scholar 

  55. Kucukevcilioglu M, Bayer A, Uysal Y, Altinsoy HI. Prostaglandin associated periorbitopathy in patients using bimatoprost, latanoprost and travoprost. Clin Exp Ophthalmol. 2014;42:126–31.

    Article  PubMed  Google Scholar 

  56. Patradul C, Tantisevi V, Manassakorn A. Factors related to prostaglandin-associated periorbitopathy in glaucoma patients. Asia Pac J Ophthalmol (Phila). 2017;6:238–42.

    CAS  Google Scholar 

  57. Sano I, Takahashi H, Inoda S, Sakamoto S, Arai Y, Takahashi Y, et al. Shortening of interpupillary distance after instillation of topical prostaglandin analog eye drops. Am J Ophthalmol. 2019;206:11–6.

    Article  CAS  PubMed  Google Scholar 

  58. Lee YK, Lee JY, Moon JI, Park MH. Effectiveness of the ICare rebound tonometer in patients with overestimated intraocular pressure due to tight orbit syndrome. Jpn J Ophthalmol. 2014;58:496–502.

    Article  PubMed  Google Scholar 

  59. Miki T, Naito T, Fujiwara M, Araki R, Kiyoi R, Shiode Y, et al. Effects of pre-surgical administration of prostaglandin analogs on the outcome of trabeculectomy. PLoS ONE. 2017;12:e0181550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hollo G, Aung T, Cantor LB, Aihara M. Cystoid macula edema related to cataract surgery and topical prostaglandin analogs: mechanism, diagnosis, and management. Surv Ophthalmol. 2020. https://doi.org/10.1016/j.survophthal.2020.02.004.

    Article  PubMed  Google Scholar 

  61. Stjernschantz J. Studies on ocular inflammation and development of a prostaglandin analogue for glaucoma treatment. Exp Eye Res. 2004;78:759–66.

    Article  CAS  PubMed  Google Scholar 

  62. Razeghinejad MR. The effect of latanaprost on intraocular inflammation and macular edema. Ocul Immunol Inflamm. 2019;27:181–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sekine Y, Shimada M, Satake S, Okubo M, Hisaka A, Hara T, et al. Pharmacokinetic analysis of intraocular penetration of latanoprost solutions with different preservatives in human eyes. J Ocul Pharmacol Ther. 2018;34:280–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lou H, Wang H, Zong Y, Cheng JW, Wei RL. Efficacy and tolerability of prostaglandin-timolol fixed combinations: an updated systematic review and meta-analysis. Curr Med Res Opin. 2015;31:1139–47.

    Article  CAS  PubMed  Google Scholar 

  65. Soares RR, Razeghinejad MR. Efficacy of the combination of carteolol hydrochloride + latanoprost in the treatment of glaucoma and ocular hypertension. Expert Opin Pharmacother. 2018;19:1731–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sinha S, Lee D, Kolomeyer NN, Myers JS, Razeghinejad R. Fixed combination netarsudil-latanoprost for the treatment of glaucoma and ocular hypertension. Expert Opin Pharmacother. 2020;21:39–45.

    Article  CAS  PubMed  Google Scholar 

  67. Yamamoto T, Ikegami T, Ishikawa Y, Kikuchi S, Opc EL. Study group randomized, controlled, phase 3 trials of carteolol/latanoprost fixed combination in primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2016;171:35–46.

    Article  CAS  PubMed  Google Scholar 

  68. Aihara M, Ropo A, Lu F, Kawata H, Iwata A, Odani-Kawabata N, et al. Intraocular pressure-lowering effect of omidenepag isopropyl in latanoprost non-/low-responder patients with primary open-angle glaucoma or ocular hypertension: the FUJI study. Jpn J Ophthalmol. 2020;64:398–406.

    Article  CAS  PubMed  Google Scholar 

  69. Aihara M, Lu F, Kawata H, Iwata A, Odani-Kawabata N, Shams NK. Omidenepag isopropyl versus latanoprost in primary open-angle glaucoma and ocular hypertension: the phase 3 AYAME study. Am J Ophthalmol. 2020;220:53–63.

    Article  CAS  PubMed  Google Scholar 

  70. Woodward DF, Wang JW, Stamer WD, Lutjen-Drecoll E, Krauss AH, Toris CB. Antiglaucoma EP2 agonists: a long road that led somewhere. J Ocul Pharmacol Ther. 2019;35:469–74.

    Article  CAS  PubMed  Google Scholar 

  71. Aihara M, Lu F, Kawata H, Iwata A, Odani-Kawabata N. Twelve-month efficacy and safety of omidenepag isopropyl, a selective EP2 agonist, in open-angle glaucoma and ocular hypertension: the RENGE study. Jpn J Ophthalmol. 2021; in press.

  72. Terao E, Nakakura S, Fujisawa Y, Nagata Y, Ueda K, Kobayashi Y, et al. Time course of conjunctival hyperemia induced by omidenepag isopropyl ophthalmic solution 0.002%: a pilot, comparative study versus ripasudil 0.4. BMJ Open Ophthalmol. 2020;5:e000538.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakakura S, Terao E, Fujisawa Y, Tabuchi H, Kiuchi Y. Changes in prostaglandin-associated periorbital syndrome after switch from conventional prostaglandin F2alpha treatment to omidenepag isopropyl in 11 consecutive patients. J Glaucoma. 2020. https://doi.org/10.1097/IJG.0000000000001442.

    Article  PubMed  Google Scholar 

  74. Esaki Y, Katsuta O, Kamio H, Noto T, Mano H, Iwamura R, et al. The antiglaucoma agent and EP2 receptor agonist omidenepag does not affect eyelash growth in mice. J Ocul Pharmacol Ther. 2020;36:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamamoto Y, Taniguchi T, Inazumi T, Iwamura R, Yoneda K, Odani-Kawabata N, et al. Effects of the selective EP2 receptor agonist omidenepag on adipocyte differentiation in 3T3-L1 cells. J Ocul Pharmacol Ther. 2020. https://doi.org/10.1089/jop.2019.0079.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ida Y, Hikage F, Umetsu A, Ida H, Ohguro H. Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells. Sci Rep. 2020;10:16018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Aihara.

Ethics declarations

Conflicts of interest

M. Aihara, Grant, Consultant fee, Honorarium for Lecturing, Non-financial support (Santen), Grant, Consultant fee, Honorarium for Lecturing (Senju), Grant, Honorarium for Lecturing (Novartis), Grant, Consultant fee, Honorarium for Lecturing (Pfizer), Grant, Consultant fee, Honorarium for Lecturing, Non-financial support (Kowa), Advisory board (Otsuka), Consultant fee, Honorarium for Lecturing (Wakamoto), Honorarium for Lecturing (Johnson & Johnson), Advisory board (Glaukos), Honorarium for Lecturing, Non-financial support (TOMEY), Non-financial support (Ono), CREWT medical systems (Advisory board), Advisory board, Honorarium for Lecturing (HOYA), Advisory board (Astellas), Grant, Advisory board, Honorarium for Lecturing, Non-financial support (Alcon), Honorarium for Lecturing (Canon), Honorarium for Lecturing (ZEISS).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Tetsuya Yamamoto, MD

Corresponding Author: Makoto Aihara

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aihara, M. Prostanoid receptor agonists for glaucoma treatment. Jpn J Ophthalmol 65, 581–590 (2021). https://doi.org/10.1007/s10384-021-00844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-021-00844-6

Keywords

Navigation