Skip to main content
Log in

Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Pristine and 2 % silver-doped indium oxide (In2O3) nanoparticles, synthesized by solution combustion method, yielded spherical nanoparticles in the range of 20–30 nm. The nanoparticles were stabilized in cubic bixbyite structure as revealed from X-ray diffraction study. In order to evaluate the potential of these nanoparticles to modulate enzyme activity, α-amylase and α-glucosidase were used as model enzymes. Pristine and 2 % silver-doped In2O3 nanoparticles demonstrated dose-dependent inhibition of α-amylase and α-glucosidase activities. Pristine In2O3 nanoparticles demonstrated 26.4 % (300 µg/mL) and 65.3 % (300 µg/mL) inhibition against α-amylase and α-glucosidase, respectively. In contrast, silver-doped In2O3 nanoparticles depicted 94.1 % (300 µg/mL) and 99.6 % (0.18 µg/mL) inhibition against α-amylase and α-glucosidase, respectively. In comparison with acarbose, a standard anti-diabetic drug that depicted absolute inhibition of α-glucosidase activity at 300 µg/mL, 2 % silver-doped In2O3 nanoparticles completely inhibited α-glucosidase at a very low concentration (0.18 µg/mL). In view of our results, the activity of α-amylase and α-glucosidase, which are targets for treatment of type 2 diabetes, can be modulated using silver-doped In2O3 nanoparticles in the concentration-dependent manner. Therefore, silver-doped In2O3 has a potential to be used as a prospective starch blocker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagheri-Mohagheghi MM, Shahtahmasebi N, Mozafari E, Shokooh-Saremi M (2009) Effect of the synthesis route on the structural properties and shape of the indium oxide (In2O3) nano-particles. Phys E 41:1757–1762

    Article  CAS  Google Scholar 

  • Chandradass J, Bae DS, Kim KH (2011) A simple method to prepare indium oxide nanoparticles: structural, microstructural and magnetic properties. Adv Powder Technol 22:370–374

    Article  CAS  Google Scholar 

  • Cho ML, Han JH, You SG (2011) Inhibitory effects of fucan sulfates on enzymatic hydrolysis of starch. LWT Food Sci Technol 44(4):1164–1171

    Article  CAS  Google Scholar 

  • De M, Chou SS, Dravid VP (2011) Graphene oxide as an enzyme inhibitor: modulation of activity of α-chymotrypsin. J Am Chem Soc 133(44):17524–17527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhobale S, Thite T, Laware SL, Rode CV, Koppikar SJ, Ghanekar RK, Kale SN (2008) Zinc oxide nanoparticles as novel α-amylase inhibitors. J Appl Phys 104(9):094907

    Article  Google Scholar 

  • Di SA, Mordas C J, Nikolovski J, Wiegand BC (2007) Metal coated nanoparticles for use in the treatment of enzymatic dermatitis. Publication no.: EP2083796 B1, Filing date: Oct 26, Publication date: 16 Mar 2011 (Patent)

  • El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828

    Article  CAS  Google Scholar 

  • Elouali S, Bloor LG, Binions R, Parkin IP, Carmalt CJ, Darr JA (2012) Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir 28(3):1879–1885

    Article  CAS  PubMed  Google Scholar 

  • Farahmandjou M (2013) Synthesis and morphology study of nano-indium tin oxide (ITO) grains. Int J Bio-Inorg Hybd Nanomater 2(2):373–378

    Google Scholar 

  • Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) Preparation and characterization of electrodeposited Ag-doped ZnO inverse opals with a smooth surface. J Porous Mater. doi:10.1007/s10934-013-9734-y

    Google Scholar 

  • Ginley DS, Taylor MP, van Hest MFAM, Young D, Teplin CW, Alleman JL, Dabney MS, Parilla P, Gedvilas LM, Keyes BM, To B, Readey D, Perkins JD (2005) Combinatorial exploration of novel transparent conducting oxide materials. In: Solar energy technologies program review meeting, Denver, CO, 7–10 November 2005

  • Gray GM (1975) Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med 292(23):1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Gurlo A, Ivanovskaya M, Barsan N, Shweizer-Berberich M, Weimar U, Gopel W, Dieguez A (1997) Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sens Actuators B 44:327

    Article  Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 679:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Yang J, Kim M-J (2011) Alpha glucosidase inhibitory effect, anti-microbial activity and UPLC analysis of Rhus verniciflua under various extract conditions. J Med Plant Res 5(5):778–783

    CAS  Google Scholar 

  • Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Parajuli O, Feng M, Xu J, Hahm J (2010) Facile synthesis and novel application of tin-rich indium tin oxide nanorods. Appl Phys Lett 96:053705

    Article  Google Scholar 

  • Kunkalekar RK, Naik MM, Dubey SK, Salker AV (2013) Antibacterial activity of silver doped manganese dioxide nanoparticles on multidrug-resistant bacteria. J Chem Technol Biotechnol 88:873–877

    Article  CAS  Google Scholar 

  • Kunkalekar RK, Prabhu MS, Naik MM, Salker AV (2014) Silver doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids Surf B Biointerfaces 113:429–434

    Article  CAS  PubMed  Google Scholar 

  • Laux S, Kaiser N, Zöller A, Götzelmann R, Lauth H, Bernitzki H (1998) Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335:1–5

    Article  CAS  Google Scholar 

  • Lee D, Ondrake J, Cui T (2011) A conductometric indium oxide semiconducting nanoparticle enzymatic biosensor array. Sensors 11(10):9300–9312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Zhang P, Shao T, Wang J, Jin L, Li XJ (2013) Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). Hazard Mater 260:40–46

    Article  CAS  Google Scholar 

  • Liao YJ, Shiang YC, Huang CC, Chang HT (2012) Molecularly imprinted aptamers of gold nanoparticles for the enzymatic inhibition and detection of thrombin. Langmuir 28(24):8944–8951

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Mohamed EAH, Siddhiqui MJA, Ang LF, Sadikun A, Chan SH, Tan SC, Asmavi MZ, Yam MF (2012) Potent α-glucosidase and α-amylase inhibitory activities of standardized 50 % ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Alternat Med 12(1):176

    Article  CAS  Google Scholar 

  • Morales AE, Mora ES, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Mex J Phys 53:18

    CAS  Google Scholar 

  • Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy IM, Lee HWH (2001) Synthesis and characterization of indium oxide nanoparticles. Nano Lett 1:287

    Article  CAS  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8(2):147–166

    Article  CAS  Google Scholar 

  • Prathap P, Subbaiah YPV, Devika M, Reddy KT (2006) Optical properties of In2O3 films prepared by spray pyrolysis. Mater Chem Phys 100(2):375–379

    Article  CAS  Google Scholar 

  • Prince JJ, Ramamurthy S, Subramanian B (2002) Spray pyrolysis growth and material properties of In2O3 films. J Cryst Growth 240:142

    Article  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    Article  CAS  PubMed  Google Scholar 

  • Raj V, Kamaraj P, Arthanareeswari M, Deepika J (2014) Evaluation of the biological activities of Ag doped bismuth oxide nanoparticles. Indian J Appl Res 4(6):53–56

    Article  Google Scholar 

  • Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo WS, Jo HH, Lee K, Park JT (2003) Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv Mater 15:795

    Article  CAS  Google Scholar 

  • Shao D, Qin L, Sawyer S (2012) High responsivity, bandpass near-UV photodetector fabricated from PVA–In2O3 nanoparticles on a GaN substrate. IEEE Photon J 8:715–720

    Article  Google Scholar 

  • Tahir ZM, Alocilja EC, Grooms LD (2007) Indium tin oxide-polyaniline biosensor: fabrication and characterization. Sensors 7(7):1123–1140

    Article  PubMed Central  CAS  Google Scholar 

  • Wang K (2008) Transparent oxide semiconductors: fabrication, properties and applications. Thesis, University of Waterloo

  • Wang S, Su P, Huang J, Wu J, Yang Y (2013) Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays. J Mater Chem B 1:1749–1754

    Article  CAS  Google Scholar 

  • Wu Z, Zhang B, Yan B (2009) Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci 10(10):4198–4209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Duan LB, Wang YC, Rao GH (2009) Influence of fuel-to-oxidizer ratio on the magnetic properties of Fe-doped In2O3 nanoparticles synthesized by solution combustion method. J Solid State Chem 182:1563

    Article  CAS  Google Scholar 

  • Yuan Y, Ding J, Xu J, Deng J, Guo J (2010) TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J Nanosci Nanotechnol 10(8):4868–4874

    Article  CAS  PubMed  Google Scholar 

  • Zhan ZL, Song W, Jiang D (2004) Preparation of nanometer-sized In2O3 particles by a reverse microemulsion method. J Colloid Interface Sci 271(2):366–371

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Li C, Han S, Liu X, Tang T, Jin W, Zhou C (2003) Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys A 8:163–166

    Article  Google Scholar 

  • Zhang B, Xing Y, Li Z, Zhou H, Mu Q, Yan B (2009) Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9(6):2280–2284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission—Basic Scientific Research (UGC-BSR) program for providing financial support to Ms. M. Z. Naik and Department of Biotechnology (DBT), Government of India, for providing Senior Research Fellowship (SRF) to Mr. S. N. Meena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Salker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, M.Z., Meena, S.N., Ghadi, S.C. et al. Evaluation of silver-doped indium oxide nanoparticles as in vitro α-amylase and α-glucosidase inhibitors. Med Chem Res 25, 381–389 (2016). https://doi.org/10.1007/s00044-015-1494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1494-6

Keywords

Navigation