Skip to main content
Log in

3D-QSAR studies of dipeptidyl peptidase-4 inhibitors using various alignment methods

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidase-4 (DPP-4) is one of the most attractive targets in the area of type 2 diabetes treatment. Till date, many structurally diverse DPP-4 inhibitors have been explored and published. To identify essential structural features of these diverse DPP-4 inhibitors responsible for antidiabetic activity, three-dimensional quantitative structure–activity relationship analyses were carried out on 36 reported quinoline and isoquinoline derivatives. The studies include comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) using three different alignment methods. The distill rigid body alignment-based CoMFA and CoMSIA models gave best significant results for 27 training set molecules, with cross-validated coefficients (q 2) of 0.803 and 0.826, respectively, and conventional coefficients (r 2) of 0.991 and 0.983, respectively. Validation by test set of nine molecules gave excellent predicted correlation coefficients (r 2pred ) of 0.874 and 0.847 for CoMFA and CoMSIA models, respectively. Detailed analysis of CoMFA and CoMSIA contour maps revealed many helpful structural insights to improve the activity of newly designed quinoline and isoquinoline derivatives as DPP-4 inhibitors for the treatment of type-2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DPP-4:

Dipeptidyl peptidase-4

3D-QSAR:

3D-quantitative structure–activity relationship

T2DM:

Type 2 diabetes mellitus

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

References

  • Al-masri IM, Mohammad MK, Taha MO (2008) Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. Chem Med Chem 3:1763–1779

    Article  CAS  PubMed  Google Scholar 

  • Chiravuri M, Schmitz T, Yardley K, Underwood R, Dayal Y, Huber BT (1999) A novel apoptotic pathway in quiescent lymphocytes identified by inhibition of a post-proline cleaving aminodipeptidase: a candidate target protease, quiescent cell proline dipeptidase. J. Immunol 63:3092–3099

    Google Scholar 

  • Cho SJ, Tropsha A (1995) Cross-validated R2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results. J Med Chem 38:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  • Drucker DJ (2003) Glucagon-like peptide-1 and the Islet β-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 144:5145–5148

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  • Gorrell MD, Gysbers V, McCaughan GW (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 54:249–264

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Vyas VK, Patel B, Ghate M (2013) Predictive 3D-QSAR and HQSAR model generation of isocitrate lyase (ICL) inhibitors by various alignment methods combined with docking study. Med Chem Res. doi:10.1007/s00044-013-0865-0

    Google Scholar 

  • Huang J, Liu G, Li J et al (2012) Synthesis, structure–activity relationship, and pharmacophore modeling studies of pyrazole-3-carbohydrazone derivatives as dipeptidyl peptidase IV inhibitors. Chem Biol Drug Des 79:897–906

    Article  PubMed  Google Scholar 

  • Jain AN (1996) Scoring noncovalent protein–ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10:427–440

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y-K (2010) Molecular docking and 3D-QSAR studies on beta-phenylalanine derivatives as dipeptidyl peptidase IV inhibitors. J Mol Model 16:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Han S, Chen T, Chen J (2012) 3D-QSAR and docking studies of arylmethylamine-based DPP IV inhibitors. Acta Pharm Sin B 2:411–420

    Article  CAS  Google Scholar 

  • Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596

    CAS  PubMed  Google Scholar 

  • Kuhn B, Hennig M, Mattei P (2007) Molecular recognition of ligands in dipeptidyl peptidase IV. Curr Top Med Chem 7:609–619

    Article  CAS  PubMed  Google Scholar 

  • Lankas GR, Leiting B, Roy RS, Eiermann GJ et al (2005) Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 54:2988–2994

    Article  CAS  PubMed  Google Scholar 

  • Madhavan T, Chung JY, Kothandan G, Gadhe CG, Cho SJ (2012) 3D-QSAR studies of JNK1 inhibitors utilizing various alignment methods. Chem Biol Drug Des 79:53–67

    Article  CAS  PubMed  Google Scholar 

  • Maezaki H, Banno Y, Miyamoto Y, Moritou Y, Asakawa T, Kataoka O et al (2011) Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554. Bioorg Med Chem 19:4482–4498

    Article  CAS  PubMed  Google Scholar 

  • Maezakia H, Banno Y, Miyamotoa Y, Sasakia M, Oia S, Asakawaa T, Kataokaa O et al (2011) Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: a new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554. Bioorg Med Chem 19:4953–4970

    Article  Google Scholar 

  • Mattei P, Boehringer M, Di GP, Fischer H et al (2010) Discovery of carmegliptin: a potent and long-acting dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 20:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Meester ID, Durinx C, Proost P, Scharpe S, Lambier AM (2002) DPIV natural substrates of medical importance. In: Langner J, Ansorge S (eds) Ectopeptidases: CD13/aminopeptidase N and CD26/dipeptidylpeptidaseiv in medicine and biology. Springer, Newyork, pp 223–257

    Chapter  Google Scholar 

  • Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 85:9–24

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:829–835

    Article  CAS  PubMed  Google Scholar 

  • Murphy KG, Dhillo WS, Bloom SR (2006) Gut peptides in the regulation of food intake and energy homeostasis. Endocrine Rev 27:719–727

    Article  CAS  Google Scholar 

  • Murugesan V, Sethi N, Prabhakar YS, Katti SB (2011) CoMFA and CoMSIA of diverse pyrrolidine analogues as dipeptidyl peptidase IV inhibitors: active site requirements. Mol Divers 15:457–466

    Article  CAS  PubMed  Google Scholar 

  • Patel BD, Ghate MD (2013) Computational studies on structurally diverse dipeptidyl peptidase IV inhibitors: an approach for new antidiabetic drug development. Med Chem Res 22:4505–4521

    Article  CAS  Google Scholar 

  • Patel BD, Ghate MD (2014) Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem 74:574–605

    Article  CAS  PubMed  Google Scholar 

  • Pissurlenkar RRS, Shaikh MS, Coutinho EC (2007) 3D-QSAR studies of dipeptidyl peptidase IV inhibitors using a docking based alignment. J Mol Model 13:1047–1071

    Article  CAS  PubMed  Google Scholar 

  • Pospisilik JA, Stafford SG, Demuth H-U, Brownsey R, Parkhouse H et al (2002) Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and β-cell glucose responsiveness in VDF (fa/fa) zucker rats. Diabetes 51:943–950

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7:496–504

    Article  CAS  PubMed  Google Scholar 

  • Saqib U, Siddiqi MI (2009) 3D-QSAR studies on triazolopiperazine amide inhibitors of dipeptidyl peptidase-IV as anti-diabetic agents. SAR QSAR Environ Res 20:519–535

    Article  CAS  PubMed  Google Scholar 

  • SYBYL X Molecular Modeling Software (2011) Tripos Associates, V. 1.3, St. Louis, USA, software available at http://www.tripos.com

  • Thorens B (1995) Glucagon like peptide-1 and control of insulin secretion. Diabetes Metab 21:311–318

    CAS  Google Scholar 

  • Vyas, VK, Gupta N, Ghate M (2013a) 3D QSAR and HQSAR analysis of protein kinase B (PKB/Akt) inhibitors using various alignment methods. Arab J Chem. doi:10.1016/j.arabjc.2013.07.052

    Google Scholar 

  • Vyas VK, Bhatt HG, Patel PK, Jalu J, Chintha C, Gupta N, Ghate M (2013b) CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents. SAR QSAR Environ Res 24:519–551

  • Wu S-Y, Lu I-L, Tsai K-C, Chiang Y-K, Jiaang W-T, Wu S-H (2008) A three-dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors. Eur J Med Chem 43:1603–1611

    Article  PubMed  Google Scholar 

  • Yang X, Li M, Su Q, Wu M, Gu T, Lu W (2013) QSAR studies on pyrrolidine amides derivatives as DPP-IV inhibitors for type-2 diabetes. Med Chem Res 22:5274–5283

    Article  CAS  Google Scholar 

  • Zeng J, Liu G, Tang Y, Jiang HD (2007) QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA. J Mol Model 13:993–1000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank GUJCOST, Gandhinagar for providing financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhumika D. Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B.D., Ghate, M.D. 3D-QSAR studies of dipeptidyl peptidase-4 inhibitors using various alignment methods. Med Chem Res 24, 1060–1069 (2015). https://doi.org/10.1007/s00044-014-1178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1178-7

Keywords

Navigation