Skip to main content
Log in

Ligand-based 3D pharmacophore design, virtual screening and molecular docking for novel p38 MAPK inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The p38 mitogen-activated protein kinase (MAPK) identified in human monocytes represents a potentially attractive therapeutic target for a class of cytokine suppressive anti-inflammatory compounds. However, the limitations of protein therapeutics have stimulated significant research aimed at developing orally bioavailable, small molecular inhibitors of cytokines. In this paper, virtual ligand-based 3D pharmacophore model, CoMFA modelling and molecular docking were employed to identify novel and structurally instinct inhibitors of small molecules. 3D-ligand-based pharmacophore models with four elements for p38 MAPK inhibitors were firstly developed. Following the validation of the pharmacophore models through the test data set, Fischer’s randomization test and CoMFA analysis, the final pharmacophore model generated was found to be highly predictive for identifying p38 inhibitors over drug-like non-inhibitors. Calculated enrichment factor shows 88 % of actives being recovered in the top 7 % of the database, and all actives being recovered in the first 12 % of the database screened, while a true positive rate of 0.09 with a false positive rate of only 0.067 is obtained. The well-validated pharmacophore model was then utilised to screen several databases as a 3D query to retrieve compounds. All hits obtained from database searching were further screened using ADMET filters. Twenty-seven compounds were selected based on high fit values and diverse structures. The molecular docking with the binding site determined by X-ray structures of the protein provides a structure and binding validation for active compounds, which is in agreement with that obtained by the final pharmacophore model. The binding model and mechanism of the compounds are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbate F, Supuran CT, Scozzafava A, Orioli P, Stubbs MT, Klebe G (2002) Nonaromatic sulfonamide group as an ideal anchor for potent human carbonic anhydrase inhibitors: role of hydrogen-bonding networks in ligand binding and drug. J Med Chem 45:3583–3587

    Article  CAS  PubMed  Google Scholar 

  • Andersson D, Karlberg T, Ekblad T, Lindgren AEG, Thorsell A, Spjut S, Uciechowska U, Niemiec MSN, Wittung-Stafshede P, Weigelt J, Elofsson M, Schüler H, Linusson A (2012) Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J Med Chem 55:7706–7718

    Article  CAS  PubMed  Google Scholar 

  • Angell RM, Angell TD, Bamborough P, Brown D, Brown M, Buckton JB, Cockerill SG, Edwards CD, Jones KL, Longstaff T, Smee PA, Smith KS, Somers D, Walker AL, Willson M (2008) Biphenyl amide p38 kinase inhibitors 2: optimisation and SAR. Bioorg Med Chem Lett 18:324–328

    Article  CAS  PubMed  Google Scholar 

  • Babaoglu K, Simeonov A, Irwin JJ, Nelson ME, Feng B, Thomas CJ, Cancian M, Costi P, Maltby DA, Jadhav A, Inglese J, Austin CP, Shoichet BK (2008) Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J Med Chem 51:2502–2511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin I, Bamborough P, Haslam CG, Hunjan SS, Longstaff T, Mooney CJ, Patel S, Quinn J, Somers DO (2008) Kinase array design, back to front: biaryl amides. Bioorg Med Chem Lett 18:5285–5289

    Article  CAS  PubMed  Google Scholar 

  • Berhanu WM, Pillai GG, Oliferenko AA, Katritzky AR (2012) Quantitative structure–activity/property relationships: the ubiquitous links between cause and effect. ChemPlusChem 77:507–517

    Article  CAS  Google Scholar 

  • Bharatham N, Bharatham K, Lee KW (2007) Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors. J Mol Graph Model 25:813–823

    Article  CAS  PubMed  Google Scholar 

  • Bowman AL, Makriyannis A (2013) Highly predictive ligand-based pharmacophore and homology models of ABHD6. Chem Biol Drug Des 81:382–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briens F, Bureau R, Rault S (1999) Applicability of catalyst in ecotoxicology, a new promising tool for 3D-QSAR: study of chlorophenols. Ecotoxicol Environ Saf 43:241–251

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Petrella RJ et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole JC, Murray CW, Nissink WM, Taylor RD, Taylor R (2005) Comparing protein–ligand docking programs is difficult. Proteins 60:325–332

    Article  CAS  PubMed  Google Scholar 

  • Cumming JG, McKenzie CL, Bowden SG, Campbell D, Masters DJ, Breed J, Jewsbury PJ (2004) Novel, potent and selective anilinoquinazoline and anilinopyrimidine inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 14:5389–5394

    Article  CAS  PubMed  Google Scholar 

  • Debnath AK (2002) Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of mycobacterium avium complex dihydrofolate reductase. J Med Chem 45:41–53

    Article  CAS  PubMed  Google Scholar 

  • Downa K, Bamborough P, Alder C, Campbell A, Christopher JA, Gerelle M, Ludbrook S, Mallett D, Mellor G, Miller DD, Pearson R, Ray K, Solanke Y, Somers D (2010) The discovery and initial optimisation of pyrrole-2-carboxamides as inhibitors of p38a MAP kinase. Bioorg Med Chem Lett 20:3936–3940

    Article  Google Scholar 

  • Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, McKerrow JH, Maloney DJ, Irwin JJ, Shoichet BK (2010) Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem 53:4891–4905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golbraikh A, Bernard P, Chrétien JR (2000) Validation of protein-based alignment in 3D quantitative structure–activity relationships with CoMFA models. Eur J Med Chem 35:123–136

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Shen M, Xiao Z, Xiao Y, Lee K, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    Article  CAS  PubMed  Google Scholar 

  • Guner OF (ed) (2000) Pharmacophore perception development and use in drug design. International University Line, La Jolla

    Google Scholar 

  • Gupta S, Mohan CG (2011) 3D-pharmacophore model based virtual screening to identify dual-binding site and selective acetylcholinesterase inhibitors. Med Chem Res 20:1422–1430

    Article  CAS  Google Scholar 

  • Herberich B, Jackson C, Wurz RP, Pettus LH, Sherman L, Liu Q, Henkle B, Saris CJM, Wong LM, Chmait S, Lee MR, Mohr C, Hsieh F, Tasker AS (2012) Identification of triazolopyridazinones as potent p38a inhibitors. Bioorg Med Chem Lett 22:1226–1229

    Article  CAS  PubMed  Google Scholar 

  • Hermann JC, Ghanem E, Li Y, Raushel FM, Irwin JJ, Shoichet BK (2006) Predicting substrates by docking high-energy intermediates to enzyme structures. J Am Chem Soc 128:15882–15891

    Article  CAS  PubMed  Google Scholar 

  • Huang YM, Chen W, Potter MJ, Chang CA (2012) Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Biophys J 103:342–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irwin JJ, Raushel FM, Shoichet B (2005) Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 44:12316–12328

    Article  CAS  PubMed  Google Scholar 

  • Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22:133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John S, Thangapandian S, Sakkiah S, Lee KW (2011) Potent bace-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking studies. BMC Bioinformatics 12(Suppl 1):S28

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228

    Article  CAS  PubMed  Google Scholar 

  • Korb O, Olsson TSG, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC (2012) Potential and limitations of ensemble docking. J Chem Inf Model 52:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Kuhn B, Fuchs JE, Reutlinger M, Stahl M, Taylor NR (2011) Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 51:3180–3198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leach AR, Gillet VJ (2007) An introduction to chemoinformatics, 2nd edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53:539–558

    Article  CAS  PubMed  Google Scholar 

  • Liverton NJ, Butcher JW, Claiborne CF, Claremon DA, Libby BE, Nguyen KT, Pitzenberger SM, Selnick HG, Smith GR, Tebben A, Vacca JP, Varga SL, Agarwal L, Dancheck K et al (1999) Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J Med Chem 42:2180–2190

    Article  CAS  PubMed  Google Scholar 

  • Lorber DM, Udo MK, Shoichet BK (2002) Proteinprotein docking with multiple residue conformations and residue substitutions. Protein Sci 11:1393–1408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mallipeddi PL, Joshi M, Briggs JM (2012) Pharmacophore-based virtual screening to aid in the identification of unknown protein function. J Chem Biol Drug Des 80:828–842

    Article  CAS  Google Scholar 

  • Martin YC (2000) DISCO: what we did right and what we missed. In: Guner OF (ed) Pharmacophore perception, development and use in drug design. International University Line, La Jolla, pp 51–66

    Google Scholar 

  • Moffett K, Konteatis Z, Nguyen D, Shetty R, Ludington J, Fujimoto T, Lee KJ, Chai X, Namboodiri H, Karpusas M, Dorsey B, Guarnieri F, Bukhtiyarova M, Springman E, Michelotti E (2011) Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD). Bioorg Med Chem Lett 21:7155–7165

    Article  CAS  PubMed  Google Scholar 

  • Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norinder U, Bergstrom CAS (2006) Prediction of ADMET properties. ChemMedChem 1:920–937

    Article  CAS  PubMed  Google Scholar 

  • Opreaa TI, Matter H (2004) Integrating virtual screening in lead discovery. Curr Opin Chem Biol 8:349–358

    Article  Google Scholar 

  • Rella M, Rushworth RA, Guy JL, Turner AJ, Thierry T, Jackson RM (2006) Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. J Chem Inf Model 46:708–716

    Article  CAS  PubMed  Google Scholar 

  • Sastry GM, Dixon SL, Sherman W (2011) Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J Chem Inf Model 51:2455–2466

    Article  CAS  PubMed  Google Scholar 

  • Schustera D, Kowalik D, Kirchmaira J, Laggnera C, Markta P, Aebischer-Gumyc C, Ströhleb F, Möllerb G, Wolbera G, Wilckensd T, Langere T, Odermattc A, Adamski JI (2010) Dentification of chemically diverse, novel inhibitors of 17 β-hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. J Steroid Biochem Mol Biol 125:148–161

    Article  Google Scholar 

  • Selness SR, Devraj RV, Devadas B, Walker JK, Boehm TL, Durley RC et al (2011) Discovery of PH-797804, a highly selective and potent inhibitor of p38 MAP kinase. Bioorg Med Chem Lett 21:4066–4071

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Beguin C, Golbraikh A, Stables JP, Kohn H, Tropsha A (2004) Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem 47:2356–2364

    Article  CAS  PubMed  Google Scholar 

  • Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart JJ (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4(1):1–103

    Article  PubMed  Google Scholar 

  • Tang H, Wang WX, Huang XP, Roth BL, Butler KV, Kozikowski AP, Jung M, Tropsha A (2009) Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 49:461–476

    Article  CAS  PubMed  Google Scholar 

  • Tynebor RM, Chen MH, Natarajan SR, O’Neill A, Thompson JE, Fitzgerald CE, O’Keefe SJ, Doherty JB (2011) Synthesis and biological activity of pyridopyridazin-6-one p38 MAP kinase inhibitors. Part 1. Bioorg Med Chem Lett 21:411–416

    Article  CAS  PubMed  Google Scholar 

  • Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JW, Taylor RD, Taylor R (2005) Modeling water molecules in protein-ligand docking using GOLD. J Med Chem 48:6504–6515

    Article  CAS  PubMed  Google Scholar 

  • Waterbeemd HVD, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Drug Discov 2:192–204

    Article  Google Scholar 

  • Wei BQ, Weaver LH, Ferrari AM, Matthews BW, Shoichet BK (2004) Testing a flexible-receptor docking algorithm in a model binding site. J Mol Biol 337:1161–1182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Sichuan University. It is grateful to Lingyan Li, Yuan Yang and Tao Li for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan R. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Dai, R., Zhang, X.R. et al. Ligand-based 3D pharmacophore design, virtual screening and molecular docking for novel p38 MAPK inhibitors. Med Chem Res 24, 797–809 (2015). https://doi.org/10.1007/s00044-014-1158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1158-y

Keywords

Navigation