Skip to main content

Advertisement

Log in

New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives: synthesis, antitumor activity, EGFR tyrosine kinase inhibitory activity and molecular modeling studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives were synthesized and characterized by analytical and spectrometrical methods (IR, HRMS, 1H, and 13C NMR). Eleven of the synthesized compounds were selected by the National Cancer Institute, USA to be screened for their antitumor activity at a single dose (10 µM) against a panel of 60 cancer cell lines. Also, the EGFR tyrosine kinase inhibitory activity of compounds 4, 5, 8, and 9 was studied. In the present work, structure-based pharmacophore mapping, molecular docking, protein–ligand interaction, fingerprints, and binding energy calculations were employed in a virtual screening strategy to identify the interaction between the compounds and the active site of EGFR tyrosine kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Soud YA, Al-Sa’doni HH, Saeed B, Jaber IH, Beni-Khalid MO, Al-Masoudi NA, Abdul-Kadir T, Colla PL, Busonera B, Sanna T, Loddo R (2008) Synthesis and in vitro antiproliferative activity of new benzothiazole derivatives. ARKIVOC xv:225–238

    Article  Google Scholar 

  • Bache KG, Slagsvold T, Stenmark H (2004) Defective down regulation of receptor tyrosine kinases in cancer. EMBO J 23:2707–2712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Rev Res 34:91–109

    Article  CAS  Google Scholar 

  • Brantley E, Antony S, Kohlhagen G, Meng LH, Agama K, Stinson SF, Sausville EA, Pommier Y (2006) Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells. Cancer Chemother Pharmacol 58:62–72

    Article  CAS  PubMed  Google Scholar 

  • Bridges A (2001) Chemical inhibitors of protein kinases. J Chem Rev 101:2541–2572

    Article  CAS  Google Scholar 

  • Cheng Y, Cui W, Chen Q, Tung CH, Ji M, Zhang F (2011) The molecular mechanism studies of chirality effect of PHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations. J Comput Aided Mol Des 25:171–180

    Article  PubMed  Google Scholar 

  • Cherry M, Williams DH (2004) Recent kinase inhibitor X-ray structures: mechanisms of inhibition and selectivity insights. Curr Med Chem 11:663–673

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (2002) Protein kinases: the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  CAS  PubMed  Google Scholar 

  • Cressier D, Prouillac C, Hernandez P, Amourette C, Diserbo M, Lion C, Rima G (2009) Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorg Med Chem 17:5275–5284

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbeny MA (2000) Synthesis of certain pyrimido[2,1-b]benzothiazole and benzothiazolo[2,3-b]quinazoline derivatives for in vitro antitumor and antiviral activities. Arzneim Forsch 50:848–853

    CAS  Google Scholar 

  • Elzahabi HAS (2011) Synthesis, characterization of some benzazoles bearing pyridine moiety: search for novel anticancer agents. Eur J Med Chem 46:4025–4034

    Article  CAS  PubMed  Google Scholar 

  • Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, O’Reilley T, Traxler P, Chaudhari B, Fretz H, Zimmermann J, Meyer T, Carvatti G, Furet P, Manley PW (2002) Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther 93:79–98

    Article  CAS  PubMed  Google Scholar 

  • Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ghabbour HA. This type of reaction under these conditions gave one positional isomer as evidenced from our previously unpublished X-ray crystallographic results obtained in our laboratory

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19:622–638

    CAS  PubMed  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. J Comput Chem Nucleic Acids Res 39:270–277

    Article  Google Scholar 

  • Grünwald V, Hidalgo M (2003) Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J Natl Cancer Inst 95:851–867

    Article  PubMed  Google Scholar 

  • Hu WP, Chen YK, Liao CC, Yu HS, Tsai YM, Huang SM, Tsai FY, Shen HC, Chang LS, Wang JJ (2010) Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents. Bioorg Med Chem 18:6197–6207

    Article  CAS  PubMed  Google Scholar 

  • Huang ST, Hsei IJ, Chen C (2006) Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 14:6106–6119

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M (2006) Targeting the EGFR pathway for cancer therapy. Curr Med Chem 13:3483–3492

    Article  CAS  PubMed  Google Scholar 

  • Karali N, Güzel O, Ozsoy N, Ozbey S, Salman A (2010) Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur J Med Chem 45:1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Kinnings SL, Jackson RM (2011) ReverseScreen3D: a structure-based ligand matching method to identify protein targets. J Chem Inf Model 51:624–634

    Article  CAS  PubMed  Google Scholar 

  • Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  CAS  PubMed  Google Scholar 

  • Labhsetwar LB, Shendarkar RG, Kuberkar SV (2010) Synthesis and in vitro anticancer activity of 8-chloro-3-cyano-4-imino-2-methylthio-4H-pyrimido[2,1-b][1,3]benzothiazole and its 2-substituted derivatives. Asian J Pharm Res Health Care 2:273–278

    CAS  Google Scholar 

  • Levitzki A (2012) Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu Rev Pharmacol Toxicol 53:161–185

    Article  PubMed  Google Scholar 

  • Lion CJ, Matthews CS, Wells G, Bradshaw TD, Stevens MFG, Westwell AD (2006) Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones (‘quinols’). Bioorg Med Chem Lett 16:5005–5008

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Bernard B, Wu JH (2006) Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 65:331–346

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Deacon S, Horiuchi K (2008) The challenge of selecting protein kinase assays for lead discovery optimization. Expert Opin Drug Discov 3:607–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60–65

    Article  CAS  PubMed  Google Scholar 

  • Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7:567–597

    Article  CAS  PubMed  Google Scholar 

  • Mohd A, Asif S, Israr A, Mohd ZH (2012) Synthesis of benzothiazole derivatives having acetamido and carbothioamido pharmacophore as anticonvulsant agents. Med Chem Res 21:2661–2670

    Article  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Jangley J, Cronisie P, Viagro-Wolff A, Gray-Goodrich M, Campell H, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  CAS  PubMed  Google Scholar 

  • Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MF, Westwell AD (2006) Antitumor benzothiazoles. 26. 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon and breast cancer cell lines. J Med Chem 49:179–185

    Article  CAS  PubMed  Google Scholar 

  • Noolvi MN, Patel HM, Kaur M (2012) Benzothiazoles: search for anticancer agents. Eur J Med Chem 54:447–462

    Article  CAS  PubMed  Google Scholar 

  • Peng-Cheng LV, Zhou CF, Chen J, Liu PG, Wang KR, Mao WJ, Huan-Qiu L, Yang Y, Xiong J, Zhu HL (2010) Design, synthesis and biological evaluation of thiazolidinone derivatives as potential EGFR and HER-2 inhibitors. Bioorg Med Chem 18:314–319

    Article  Google Scholar 

  • Peter B, Robert HB, Craig SH, Laurent FAH, Mark H, Jason GK, Jane K, Teresa K, Donald JO, Stuart EP, Emma JW, Ingrid W (2006) Inhibitors of epidermal growth factor receptor tyrosine kinase: optimisation of potency and in vivo pharmacokinetics. Bioorg Med Chem Lett 16:4908–4912

    Article  Google Scholar 

  • Prasad PR, Shinde SD, Waghmare GS, Naik VL, Bhuvaneswari K, Kuberkar SV (2011) Synthesis and in vitro anticancer activity of 9-chloro-3-cyano-8-fluoro-2-methylthio-4-oxo-4H-pyrimido[2,1-b][1,3]benzothiazole and its 2-substituted derivatives. J Chem Pharm Res 3:20–27

    CAS  Google Scholar 

  • Prasad PR, Bhuvaneswari K, Kumar KP, Rajani K, Kuberkar SV (2012) Synthesis and biological activity evaluation of some fused pyrimido-benzothiazole derivatives. J Chem Pharm Res 4:1606–1611

    Google Scholar 

  • Prouillac C, Vicendo P, Garrigues JC, Poteau R, Rima G (2009) Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radic Biol Med 46:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Ranson M (2004) Epidermal growth factor receptor tyrosine kinase inhibitors. Br J Cancer 90:2250–2255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reck M, Zandwijk NV, Gridelli C, Baliko Z, Rischin D, Allan S, Krzakowski M, Heigener D (2010) Erlotinib in advanced non-small cell lung cancer: efficacy and safety findings of the global phase IV Tarceva lung cancer survival treatment study. J Thorac Oncol 5:1616–1622

    Article  PubMed  Google Scholar 

  • Roymans D, Slegers H (2001) Phosphatidylinositol 3-kinases in tumor progression. Eur J Biochem 268:487–498

    Article  CAS  PubMed  Google Scholar 

  • Saeed S, Rashid N, Jones PG, Ali M, Hussain R (2010) Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur J Med Chem 45:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Sahu PK, Gupta SK, Thavaselvam D, Agarwal DD (2012) Synthesis and evaluation of antimicrobial activity of 4H-pyrimido[2,1-b]benzothiazole, pyrazole and benzylidene derivatives of curcumin. Eur J Med Chem 54:366–378

    Article  CAS  PubMed  Google Scholar 

  • Sharma FA, Sharma R, Tyagi T (2009) Receptor tyrosine kinase inhibitors as potent weapons in war against cancers. Curr Pharm Des 15:758–776

    Article  CAS  PubMed  Google Scholar 

  • Shendarkar GR, Labhsetwar LB, Butle SR, Karki SS, Sharma RH, Kuberkar SV (2011) Synthesis and antimicrobial evaluation of some fused iminopyrimidobenzothiazole derivatives. Int J Res Pharm Biomed Sci 2:1350–1356

    Google Scholar 

  • Shi XH, Wang Z, Xia Y, Ye T-H, Deng M, Xu Y-Z, Wei Y-Q, Yu L-T (2012) Synthesis and biological evaluation of novel benzothiazole-2-thiol derivatives as potential anticancer agents. Molecules 17:3933–3944

    Article  CAS  PubMed  Google Scholar 

  • Smith J (2005) Erlotinib: small-molecule targeted therapy in the treatment of non small-cell lung cancer. Clin Ther 27:1513–1534

    Article  CAS  PubMed  Google Scholar 

  • Sridhar S, Seymour L, Shepherd FA (2003) Inhibitors of epidermal growth factor receptors: a review of clinical research with a focus on non small-cell lung cancer. Lancet Oncol 4:397–406

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Fukuoka M (2005) Gefitinib in non-small cell lung cancer. Expert Opin Pharmacother 6:985–993

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. J Cell 61:203–212

    Article  CAS  Google Scholar 

  • Wainberg ZA, Anghel A, Desai AJ, Ayala R, Luo T, Safran B, Fejzo MS, Slamon DJ, Finn RS (2010) Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo. Clin Cancer Res 16:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR–ABL for the treatment of imatinib resistant chronic myeloid leukemia. Nat Rev Cancer 7:345–356

    Article  CAS  PubMed  Google Scholar 

  • Whittaker S, Kirk R, Hayward R, Zambon A, Viros A, Cantarino N, Affolter A, Nourry A, Niculescu-Duvaz D, Springer C, Marais R (2010) Gatekeeper mutations medicate resistance to BRAF-targeted therapies. Sci Transl Med 2:35–41

    Google Scholar 

  • Wolber G, Langer T (2005) LigandScout: 3D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Comp Sci 45:160–169

    Article  CAS  Google Scholar 

  • Wu KW, Chen PC, Wang J, Sun YC (2012) Computation of relative binding free energy for an inhibitor and its analogs binding with Erk kinase using thermodynamic integration MD simulation. J Comput Aided Mol Des 26:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Yun C, Boggon TJ, Li Y, Woo MS, Greulich MS, Meyerson M, Eck MJ (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  PubMed  Google Scholar 

  • Zuccotto F, Ardini E, Casale E, Angiolini M (2010) Through the “Gatekeeper Door”: exploiting the active kinase conformation. J Med Chem 53:2681–2694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the staff members of the Department of Health and Human Services, National Cancer Institute (NCI), Bethesda, Maryland, USA for performing the antitumor screening of the newly synthesized compounds. Thanks to Georgia State University, USA for carrying out the spectral and elemental analyses. Thanks also to Reaction Biology Corporation, USA for performing EGFR tyrosine kinase assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. El-Gohary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabr, M.T., El-Gohary, N.S., El-Bendary, E.R. et al. New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives: synthesis, antitumor activity, EGFR tyrosine kinase inhibitory activity and molecular modeling studies. Med Chem Res 24, 860–878 (2015). https://doi.org/10.1007/s00044-014-1114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1114-x

Keywords

Navigation