Skip to main content
Log in

Investigations and design of pyridine-2-carboxylic acid thiazol-2-ylamide analogs as methionine aminopeptidase inhibitors using 3D-QSAR and molecular docking

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Methionine amino peptidases (MetAPs) are metalloproteases that remove co-translational N-terminal methionine from nascent polypeptide chains. Due to their essential role in protein synthesis, MetAPs are considered as potential targets for antibacterial drugs. In the present work, three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were carried out on a series of pyridine-2-carboxylic acid thiazol-2-ylamide-based MetAP inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The models were developed using 30 training set molecules. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients (q 2) of 0.799 and 0.704 and conventional correlation coefficients (r 2) of 0.989 and 0.954, respectively. These inhibitors were docked into MetAP active site. The CoMFA and CoMSIA field contour maps correlate well with the structural characteristics of the binding pocket of MetAP active site. Using the knowledge of structure–activity relationship and receptor–ligand interactions from 3D-QSAR model and the docked complexes, four new pyridine-2-carboxylic acid thiazol-2-ylamide analogs were designed. These analogs exhibit significantly better predicted activity than the reported molecules. The present work has implications for the development of novel antibiotics as potent MetAP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accelrys Software Inc., (2010) Discovery studio modeling environment, Release 2.1, San Diego: Accelrys Software Inc., http://accelrys.com/products/discovery-studio/. Accessed 26 Apr 2013

  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Arfin SM, Kendall RL, Hall L, Weaver LH, Stewart AE, Matthews BW, Bradshaw RA (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc Natl Acad Sci USA 92:7714–7718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bush BL, Nachbar RB Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput Aided Mol Des 7:587–619

    Article  CAS  PubMed  Google Scholar 

  • Chang SY, McGary EC, Chang S (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171:4071–4072

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark M, Cramer RD (1993) The probability of chance correlation using partial least squares (PLS). Quant Struct Act Relat 12:137–145

    Article  CAS  Google Scholar 

  • Copik AJ, Swierczek SI, Lowther WT, D’souza VM, Matthews BW, Holz RC (2003) Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli. Biochemistry 42:6283–6292

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD, Bunce JD, Patterson DE (1973) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25

    Article  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Folkers G, Merz A, Rognan D (1993) 3D-QSAR in drug design. ESCOM, The Netherlands

    Google Scholar 

  • Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5:2336–2349

    Article  CAS  PubMed  Google Scholar 

  • Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61:1455–1474

    Article  CAS  PubMed  Google Scholar 

  • Hoge CW, Gambel JM, Srijan A, Pitarangsi C, Echeverria P (1998) Trends in antibiotic resistance among diarrheal pathogens isolated in Thailand over 15 years. Clin Infect Dis 26:341–345

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Kamath S, Buolamwini JK (2003) Receptor-guided alignment-based comparative 3D-QSAR studies of benzylidene malonitrile tyrphostins as EGFR and HER-2 kinase inhibitors. J Med Chem 46:4657–4668

    Article  CAS  PubMed  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H (1993) QSAR: Hansch analysis and related approaches. VCH Verlagsgesellschaft mbH, Weinheim

    Book  Google Scholar 

  • Kunin CM (1993) Resistance to antimicrobial drugs—a worldwide calamity. Ann Intern Med 118:557–561

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci USA 92:12357–12361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JY, Cui YM, Chen LL, Gu M, Li J, Nan FJ, Ye QZ (2004) Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity. J Biol Chem 279:21128–21134

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Matthews BW (2000) Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608

    Article  CAS  PubMed  Google Scholar 

  • Luo QL, Li JY, Liu ZY, Chen LL, Li J, Qian Z, Shen Q, Li Y, Lushington GH, Ye QZ, Nan FJ (2003) Discovery and structural modification of inhibitors of methionine aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. J Med Chem 46:2631–2640

    Article  CAS  PubMed  Google Scholar 

  • Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  • Meinnel T, Mechulam Y, Blanquet S (1993) Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Miller CG, Kukral AM, Miller JL, Movva NR (1989) pepM is an essential gene in Salmonella typhimurium. J Bacteriol 171:5215–5217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poreba M, Gajda A, Picha J, Jiracek J, Marschner A, Klein CD, Salvesen GS, Drag M (2012) S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors. Biochimie 94:704–710

    Article  CAS  PubMed  Google Scholar 

  • Rahal K, Wang F, Schindler J, Rowe B, Cookson B, Huovinen P, Marton A, Lalitha MK, Semina N, Kronvall G, Guzman M (1997) Reports on surveillance of antimicrobial resistance in individual countries. Clin Infect Dis Suppl 1:S169–S175

    Article  Google Scholar 

  • Sack RB, Rahman M, Yunus M, Khan EH (1997) Antimicrobial resistance in organisms causing diarrheal disease. Clin Infect Dis Suppl 1:S102–S105

    Article  Google Scholar 

  • Supuran CT, Scozzafava A, Clare BW (2002) Bacterial protease inhibitors. Med Res Rev 22:329–372

    Article  CAS  PubMed  Google Scholar 

  • SYBYL 8.0 (2008) Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA. http://www.tripos.com/. Accessed 13 Mar 2013

  • Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2:13–28

    Article  CAS  PubMed  Google Scholar 

  • Vaughan MD, Sampson PB, Honek JF (2002) Methionine in and out of proteins: targets for drug design. Curr Med Chem 9:385–409

    Article  CAS  PubMed  Google Scholar 

  • Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172

    Article  CAS  Google Scholar 

  • Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression. The partial least squares approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743

    Article  Google Scholar 

  • World Health Organization (1999) WHO report on infectious disease: removing obstables to healthy development. WHO: Geneva. http://www.who.int/infectious-disease-report/index-rpt99.html. Accessed 7 Aug 2013

  • Yang GF, Lu HT, Xiong Y, Zhan CG (2006) Understanding the structure-activity and structure-selectivity correlation of cyclic guanine derivatives as phosphodiesterase-5 inhibitors by molecular docking, CoMFA and CoMSIA analyses. Bioorg Med Chem 14:1462–1473

    Article  CAS  PubMed  Google Scholar 

  • Ye QZ, Xie SX, Huang M, Huang WJ, Lu JP, Ma ZQ (2004) Metalloform-selective inhibitors of escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor. J Am Chem Soc 126:13940–13941

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in VV’s laboratory is supported by RGYI Grant from Department of Biotechnology, Government of India and UPE-2 grant of University of Hyderabad. PAM is supported by the CSIR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Prakash Prabhu or Vaibhav Vindal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meetei, P.A., Hauser, A.S., Raju, P.S. et al. Investigations and design of pyridine-2-carboxylic acid thiazol-2-ylamide analogs as methionine aminopeptidase inhibitors using 3D-QSAR and molecular docking. Med Chem Res 23, 3861–3875 (2014). https://doi.org/10.1007/s00044-014-0950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0950-z

Keywords

Navigation