Skip to main content

Advertisement

Log in

Reversible redox system-based drug design, synthesis, and evaluation for targeting nitrogen mustard across brain

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Target drug delivery of nitrogen mustard anticancer agents for a brain tumor is still a challenge due to their high hydrophilicity, poor physicochemical properties, and toxicity to normal tissues. The present study is, therefore, an attempt to investigate the possibility of improving the targeting potential and sustained release of nitrogen mustard alkylating agent to brain by employing reversible redox chemical delivery system approach. Various redox derivatives CDS-L-M (4ac) based on dihydropyridine ↔ quaternary pyridinium ion redox system were synthesized and characterized by IR, (1H and 13C)-NMR, and CHN elemental studies. The potential of these CDS derivatives (4ac) to penetrate the blood–brain barrier was computed through an online software program and the values analyzed lay between the ranges those are required for good brain penetration. The results of storage stability study, in vitro chemical oxidation (silver nitrate) and pharmacokinetic studies in human blood, rat blood and brain homogenate for all CDS-L-M (4ac) demonstrated that all derivatives could be oxidized into corresponding quaternary salts at an adequate rate, which suggested that brain targeting could be possible with more stable CDS-L-M (4c). The in vivo study on rats showed that administration of the CDS-L-M (4c) resulted in the sustained level of the corresponding salt (3c) in the brain, while blood levels of the oxidized metabolite rapidly fell. The in vitro NBP alkylating activity of quaternary salt (3c) of CDS-L-M (4c) was comparable to the known drug chlorambucil among all the synthesized derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Obaid AM, Farag HA, Khalil AA et al (2006) Synthesis and investigation of novel shelf-stable, brain-specific chemical delivery system. Saudi Pharm J 14(1):1–15

    CAS  Google Scholar 

  • Balazs MK, Anderson A, Iwamoto RH, Lim P (1970) Synthesis of 4-{p-[(2-chloroethyl)-(2-hydroxyethyl)amino]phenyl}butyric acid and its behaviors in the 4-(4-nitrobenzyl) pyridine assay procedure. J Pharm Sci 59(4):563–565

    Article  CAS  PubMed  Google Scholar 

  • Bartzatt RL (2004) Synthesis and alkylating activity of a nitrogen mustard agent to penetrate the blood–brain barrier. Drug Deliv 11:19–26

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Farag H (1983) Improved delivery through biological membranes. XI. A redox chemical drug-delivery system and its use for brain-specific delivery of phenylethylamine. J Med Chem 26:315–318

    Google Scholar 

  • Bodor N, Farag HH, Brewster ME (1981) Site-specific sustained release of drugs to the brain. Science 214:1370–1372

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Venkatraghavan V, Windwood D, Estes K, Brewster E (1989) Improved delivery through biological membranes. XLI. Brain-enhanced delivery of chlorambucil. Int J Pharm 53:195–208

    Article  CAS  Google Scholar 

  • Clark D (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J Pharm Sci 8(88):815–821

    Article  Google Scholar 

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(5):1–49

    Article  Google Scholar 

  • El-Sherbeny MA, Al-Salem HS, Sultan MA, Radwan MA, Farag HA, EI-Subbagh HI (2003) Synthesis in vitro and in vivo evaluation of a delivery system for targeting anticancer drug to the brain. Arch Pharm 336(10):445–455

    Article  CAS  Google Scholar 

  • Francisco AP, Perry MJ, Moreira R, Mendes E (2008) Alkylating agents. In: Misssailidis S (ed) Anticancer therapeutics, Chap 9. Wiley, New York, pp 133–158

    Chapter  Google Scholar 

  • Genka S, Deutsch J, Shetty UH, Stahle PL, John V, Lieberburg IM, Ali-Osman F, Rapoport SI, Greig NH (1993) Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. Clin Exp Metastasis 11:131–140

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Driscoll JS (1976) Potential CNS antitumor agents-phenothiazines I: nitrogen mustard derivatives. J Med Chem 65:1699–1701

    CAS  Google Scholar 

  • Huttunen KM, Rautio J (2011) Prodrugs: an efficient way to breech delivery and targeting barriers. Curr Top Med Chem 11(2265):2287

    Google Scholar 

  • Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42(6):724–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelder J, Grootenhuis P, Bayada D, Delbressine L, Ploemen J (1999) Polar molecular surface at a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 10(16):1514–1519

    Article  Google Scholar 

  • Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47:6338–6348

    Article  CAS  PubMed  Google Scholar 

  • Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Molinspiration Cheminformatics (2012) Molinspiration Cheminformatics, Bratislava, Slovak Republic. http://www.molinspiration.com/services/properties.html. Accessed 20 April 2012

  • Osterberg T, Norinder U (2000) Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J Chem Inf Comput Sci 40:1408–1411

    Article  CAS  PubMed  Google Scholar 

  • Pajouhesh H, Lenz GR (2005) Medicinal chemistry properties of successful central nervous system drugs. NeuroRx 2:541–553

    Article  PubMed Central  PubMed  Google Scholar 

  • Palm K, Luthman K, Ungell A, Strandluno G, Artusson P (1996) Correlation of drug absorption with molecular surface properties. J Pharm Sci 1(85):32–39

    Article  Google Scholar 

  • Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S (2008) Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13:1035–1065

    Article  CAS  PubMed  Google Scholar 

  • Peng GW, Marquez VE, Driscoll JS (1975) Potential central nervous system antitumor agents. Hydantoin derivatives. J Med Chem 18(8):846–849

    Article  CAS  PubMed  Google Scholar 

  • Pop E, Loftsson T, Bodor N (1991) Solubilization and stabilization of benzylpencillin chemical delivery system by 2-hydroxypropyl-β-cyclodextrin. Pharm Res 8:1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Prokai L, Prokai-Tatrai K, Bodor N (2000) Targeting drug to the brain by redox chemical drug delivery system. Med Res Rev 20:367–416

    Article  CAS  PubMed  Google Scholar 

  • Raghavan KS, Shek E, Bodor N (1987) Improved delivery through biological membranes. XXX. Synthesis and biological aspects of a 1,4-dihydropyridine based chemical delivery system for brain-sustained delivery of hydroxy CCNU. Anticancer Drug Des 2(1):25–36

    CAS  PubMed  Google Scholar 

  • Sheha M, Al-Tayeb A, EI-Sherief H, Farag H (2003) New carrier for specific delivery of drugs to the brain. Bio Med Chem 11:1865–1872

    Article  CAS  Google Scholar 

  • Singh RK, Devi S, Prasad DN (2011) Synthesis, physicochemical and biological evaluation of CNS active 2-aminobenzophenone derivatives as potent skeletal muscle relaxant. Arab J Chem. doi:10.1016/j.arabjc.2011.11.013

  • Singh RK, Sharma S, Malik S, Sharma D, Prasad DN, Bhardwaj TR (2012a) Synthesis and study of chemical delivery system for targeting nitrogen mustard to the brain. Asian J Chem 24(12):5635–5638

    CAS  Google Scholar 

  • Singh RK, Prasad DN, Bhardwaj TR (2012b) Synthesis, physicochemical properties and kinetic study of bias (2-chloroethyl) amine as a cytotoxic agent for brain delivery. Arab J Chem. doi:10.1016/j.arabjc.2012.11.005

  • Singh RK, Prasad DN, Bhardwaj TR (2012c) Synthesis, alkylation activity and physicochemical evaluation of benzodiazepine-linked nitrogen mustard agent to penetrate the blood–brain barrier. Asian J Chem 24(12):5605–5608

    CAS  Google Scholar 

  • Singh RK, Prasad DN, Bhardwaj TR (2013a) Synthesis, in vitro/in vivo evaluation and insilico physicochemical study of the prodrug approach for brain targeting of alkylating agent. Med Chem Res 22:5324–5336

    Google Scholar 

  • Singh RK, Prasad DN, Bhardwaj TR (2013b) Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential CNS antitumor agents. Med Chem Res. doi:10.1007/s00044-013-0582-8

  • Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW (2007) Prodrugs: challenges and rewards part 1 and 2. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihyropyridines. Chem Rev 82:223–243

    Article  CAS  Google Scholar 

  • Sziraki I, Horvath K, Bodor N (2006) Comparative evaluation of estredox, a brain-targeted estradiol delivery system versus traditional estrogen replacement therapy. Pharmazie 61:140–143

    CAS  PubMed  Google Scholar 

  • Tapfer MK, Sebestyen L, Kurucz I, Horvath K, Szelenyi I, Bodor N (2004) New evidence for the selective, long-lasting central effects of the brain-targeted estradiol, estredox. Pharmacol Biochem Behav 77:423–429

    Article  CAS  PubMed  Google Scholar 

  • Van de Waterbeemd H, Camenish G, Folkers G, Chretien JR, Raevsky OA (1998) Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding characteristic. J Drug Targets 6:151–165

    Article  Google Scholar 

  • Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, Hidalgo IJ (2005) Evaluation of the MDR–MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm 288:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the College Managing Committee, SCOP, Nangal for providing necessary facilities to carry out research work. The authors wish to express their gratitude to Dr. Manoj Kumar, Professor of Pharmaceutical Chemistry, UIPS, Panjab University, Chandigarh to carry out an ADME study at his lab. Authors are also thankful to SAIF, Panjab University, Chandigarh for cooperation in getting the spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Kumar, S., Prasad, D.N. et al. Reversible redox system-based drug design, synthesis, and evaluation for targeting nitrogen mustard across brain. Med Chem Res 23, 2405–2416 (2014). https://doi.org/10.1007/s00044-013-0833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0833-8

Keywords

Navigation