Skip to main content

Reversible redox system-based drug design, synthesis, and evaluation for targeting nitrogen mustard across brain

Abstract

Target drug delivery of nitrogen mustard anticancer agents for a brain tumor is still a challenge due to their high hydrophilicity, poor physicochemical properties, and toxicity to normal tissues. The present study is, therefore, an attempt to investigate the possibility of improving the targeting potential and sustained release of nitrogen mustard alkylating agent to brain by employing reversible redox chemical delivery system approach. Various redox derivatives CDS-L-M (4ac) based on dihydropyridine ↔ quaternary pyridinium ion redox system were synthesized and characterized by IR, (1H and 13C)-NMR, and CHN elemental studies. The potential of these CDS derivatives (4ac) to penetrate the blood–brain barrier was computed through an online software program and the values analyzed lay between the ranges those are required for good brain penetration. The results of storage stability study, in vitro chemical oxidation (silver nitrate) and pharmacokinetic studies in human blood, rat blood and brain homogenate for all CDS-L-M (4ac) demonstrated that all derivatives could be oxidized into corresponding quaternary salts at an adequate rate, which suggested that brain targeting could be possible with more stable CDS-L-M (4c). The in vivo study on rats showed that administration of the CDS-L-M (4c) resulted in the sustained level of the corresponding salt (3c) in the brain, while blood levels of the oxidized metabolite rapidly fell. The in vitro NBP alkylating activity of quaternary salt (3c) of CDS-L-M (4c) was comparable to the known drug chlorambucil among all the synthesized derivatives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Al-Obaid AM, Farag HA, Khalil AA et al (2006) Synthesis and investigation of novel shelf-stable, brain-specific chemical delivery system. Saudi Pharm J 14(1):1–15

    CAS  Google Scholar 

  2. Balazs MK, Anderson A, Iwamoto RH, Lim P (1970) Synthesis of 4-{p-[(2-chloroethyl)-(2-hydroxyethyl)amino]phenyl}butyric acid and its behaviors in the 4-(4-nitrobenzyl) pyridine assay procedure. J Pharm Sci 59(4):563–565

    CAS  Article  PubMed  Google Scholar 

  3. Bartzatt RL (2004) Synthesis and alkylating activity of a nitrogen mustard agent to penetrate the blood–brain barrier. Drug Deliv 11:19–26

    CAS  Article  PubMed  Google Scholar 

  4. Bodor N, Farag H (1983) Improved delivery through biological membranes. XI. A redox chemical drug-delivery system and its use for brain-specific delivery of phenylethylamine. J Med Chem 26:315–318

    Google Scholar 

  5. Bodor N, Farag HH, Brewster ME (1981) Site-specific sustained release of drugs to the brain. Science 214:1370–1372

    CAS  Article  PubMed  Google Scholar 

  6. Bodor N, Venkatraghavan V, Windwood D, Estes K, Brewster E (1989) Improved delivery through biological membranes. XLI. Brain-enhanced delivery of chlorambucil. Int J Pharm 53:195–208

    CAS  Article  Google Scholar 

  7. Clark D (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J Pharm Sci 8(88):815–821

    Article  Google Scholar 

  8. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(5):1–49

    Article  Google Scholar 

  9. El-Sherbeny MA, Al-Salem HS, Sultan MA, Radwan MA, Farag HA, EI-Subbagh HI (2003) Synthesis in vitro and in vivo evaluation of a delivery system for targeting anticancer drug to the brain. Arch Pharm 336(10):445–455

    CAS  Article  Google Scholar 

  10. Francisco AP, Perry MJ, Moreira R, Mendes E (2008) Alkylating agents. In: Misssailidis S (ed) Anticancer therapeutics, Chap 9. Wiley, New York, pp 133–158

    Chapter  Google Scholar 

  11. Genka S, Deutsch J, Shetty UH, Stahle PL, John V, Lieberburg IM, Ali-Osman F, Rapoport SI, Greig NH (1993) Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. Clin Exp Metastasis 11:131–140

    CAS  Article  PubMed  Google Scholar 

  12. Hirata T, Driscoll JS (1976) Potential CNS antitumor agents-phenothiazines I: nitrogen mustard derivatives. J Med Chem 65:1699–1701

    CAS  Google Scholar 

  13. Huttunen KM, Rautio J (2011) Prodrugs: an efficient way to breech delivery and targeting barriers. Curr Top Med Chem 11(2265):2287

    Google Scholar 

  14. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42(6):724–733

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Kelder J, Grootenhuis P, Bayada D, Delbressine L, Ploemen J (1999) Polar molecular surface at a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 10(16):1514–1519

    Article  Google Scholar 

  16. Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47:6338–6348

    CAS  Article  PubMed  Google Scholar 

  17. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Article  Google Scholar 

  18. Molinspiration Cheminformatics (2012) Molinspiration Cheminformatics, Bratislava, Slovak Republic. http://www.molinspiration.com/services/properties.html. Accessed 20 April 2012

  19. Osterberg T, Norinder U (2000) Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics. J Chem Inf Comput Sci 40:1408–1411

    CAS  Article  PubMed  Google Scholar 

  20. Pajouhesh H, Lenz GR (2005) Medicinal chemistry properties of successful central nervous system drugs. NeuroRx 2:541–553

    PubMed Central  Article  PubMed  Google Scholar 

  21. Palm K, Luthman K, Ungell A, Strandluno G, Artusson P (1996) Correlation of drug absorption with molecular surface properties. J Pharm Sci 1(85):32–39

    Article  Google Scholar 

  22. Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S (2008) Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13:1035–1065

    CAS  Article  PubMed  Google Scholar 

  23. Peng GW, Marquez VE, Driscoll JS (1975) Potential central nervous system antitumor agents. Hydantoin derivatives. J Med Chem 18(8):846–849

    CAS  Article  PubMed  Google Scholar 

  24. Pop E, Loftsson T, Bodor N (1991) Solubilization and stabilization of benzylpencillin chemical delivery system by 2-hydroxypropyl-β-cyclodextrin. Pharm Res 8:1044–1049

    CAS  Article  PubMed  Google Scholar 

  25. Prokai L, Prokai-Tatrai K, Bodor N (2000) Targeting drug to the brain by redox chemical drug delivery system. Med Res Rev 20:367–416

    CAS  Article  PubMed  Google Scholar 

  26. Raghavan KS, Shek E, Bodor N (1987) Improved delivery through biological membranes. XXX. Synthesis and biological aspects of a 1,4-dihydropyridine based chemical delivery system for brain-sustained delivery of hydroxy CCNU. Anticancer Drug Des 2(1):25–36

    CAS  PubMed  Google Scholar 

  27. Sheha M, Al-Tayeb A, EI-Sherief H, Farag H (2003) New carrier for specific delivery of drugs to the brain. Bio Med Chem 11:1865–1872

    CAS  Article  Google Scholar 

  28. Singh RK, Devi S, Prasad DN (2011) Synthesis, physicochemical and biological evaluation of CNS active 2-aminobenzophenone derivatives as potent skeletal muscle relaxant. Arab J Chem. doi:10.1016/j.arabjc.2011.11.013

  29. Singh RK, Sharma S, Malik S, Sharma D, Prasad DN, Bhardwaj TR (2012a) Synthesis and study of chemical delivery system for targeting nitrogen mustard to the brain. Asian J Chem 24(12):5635–5638

    CAS  Google Scholar 

  30. Singh RK, Prasad DN, Bhardwaj TR (2012b) Synthesis, physicochemical properties and kinetic study of bias (2-chloroethyl) amine as a cytotoxic agent for brain delivery. Arab J Chem. doi:10.1016/j.arabjc.2012.11.005

  31. Singh RK, Prasad DN, Bhardwaj TR (2012c) Synthesis, alkylation activity and physicochemical evaluation of benzodiazepine-linked nitrogen mustard agent to penetrate the blood–brain barrier. Asian J Chem 24(12):5605–5608

    CAS  Google Scholar 

  32. Singh RK, Prasad DN, Bhardwaj TR (2013a) Synthesis, in vitro/in vivo evaluation and insilico physicochemical study of the prodrug approach for brain targeting of alkylating agent. Med Chem Res 22:5324–5336

    Google Scholar 

  33. Singh RK, Prasad DN, Bhardwaj TR (2013b) Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential CNS antitumor agents. Med Chem Res. doi:10.1007/s00044-013-0582-8

  34. Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW (2007) Prodrugs: challenges and rewards part 1 and 2. Springer Science + Business Media, New York

    Book  Google Scholar 

  35. Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihyropyridines. Chem Rev 82:223–243

    CAS  Article  Google Scholar 

  36. Sziraki I, Horvath K, Bodor N (2006) Comparative evaluation of estredox, a brain-targeted estradiol delivery system versus traditional estrogen replacement therapy. Pharmazie 61:140–143

    CAS  PubMed  Google Scholar 

  37. Tapfer MK, Sebestyen L, Kurucz I, Horvath K, Szelenyi I, Bodor N (2004) New evidence for the selective, long-lasting central effects of the brain-targeted estradiol, estredox. Pharmacol Biochem Behav 77:423–429

    CAS  Article  PubMed  Google Scholar 

  38. Van de Waterbeemd H, Camenish G, Folkers G, Chretien JR, Raevsky OA (1998) Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding characteristic. J Drug Targets 6:151–165

    Article  Google Scholar 

  39. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, Hidalgo IJ (2005) Evaluation of the MDR–MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm 288:349–359

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the College Managing Committee, SCOP, Nangal for providing necessary facilities to carry out research work. The authors wish to express their gratitude to Dr. Manoj Kumar, Professor of Pharmaceutical Chemistry, UIPS, Panjab University, Chandigarh to carry out an ADME study at his lab. Authors are also thankful to SAIF, Panjab University, Chandigarh for cooperation in getting the spectral data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2849 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, R.K., Kumar, S., Prasad, D.N. et al. Reversible redox system-based drug design, synthesis, and evaluation for targeting nitrogen mustard across brain. Med Chem Res 23, 2405–2416 (2014). https://doi.org/10.1007/s00044-013-0833-8

Download citation

Keywords

  • Alkylating agent
  • Blood–brain barrier
  • Chemical delivery system
  • ADME
  • NBP assay
  • In vitro/in vivo studies