Skip to main content

Advertisement

Log in

Synthesis and in vitro evaluation of antifungal and cytotoxic activities of eugenol glycosides

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Six eugenol glycosides were prepared in order to assess their antifungal activity against Candida species. They were synthesized by glycosylation of eugenol with the appropriate glycosyl bromides followed by deacetylation with sodium methoxide in methanol and were evaluated in vitro for their antifungal activity through a Mueller–Hinton broth microdilution method. The peracetyl glycoside (derivative 4) was the most promising one since it was able to inhibit growth of C. albicans, C. tropicalis and C. glabrata with IC50 values much lower than that of the prototype eugenol. Derivative 4 showed to be 160.0 and 3.4 times more potent than eugenol and fluconazole, respectively, against C. glabrata with low cytotoxity (selectivity index of 45). Moreover, it was possible to verify the positive effect of gluco configuration and lipophilicity on antifungal activity, since glucose peracetyl derivatives were more active than the free sugars of galacto configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Ahmad A, Khan A, Yousuf S, Khan LA, Manzoor N (2010) Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 81:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Atsumi T, Fujisawa S, Satoh K, Sakagami H, Iwakura I, Ueha T, Sugita Y, Yokoe I (2000) Cytotoxicity and radical intensity of eugenol, isoeugenol or related dimers. Anticancer Res 20:2519–2524

    CAS  PubMed  Google Scholar 

  • Babich H, Stern A, Borenfreund E (1993) Eugenol cytotoxicity evaluated with continuous cell lines. Toxicol In Vitro 7:105–109

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Pucci MJ (2011) New antimicrobial agents on the horizon. Biochem Pharmacol 82:1528–1539

    Article  CAS  PubMed  Google Scholar 

  • Carrasco H, Raimondi M, Svetaz L, Di Liberto M, Rodriguez MV, Espinoza L, Madrid A, Zacchino S (2012) Antifungal activity of eugenol analogues: influence of different substituents and studies on mechanism of action. Molecules 17:1002–1024

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard-Third Edition. M27-A3. CLSI, Wayne, PA, USA

  • Daniel AN, Sartoretto SM, Schmidt G, Caparroz-Assef SM, Bersani-Amado CA, Cuman RKN (2009) Anti-inflammatory and antinociceptive activities of eugenol essential oil in experimental animal models. Braz J Pharmacog 19(1B):212–217

    Google Scholar 

  • Devi KP, Nisha SA, Sakthivel R, Pandian SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130:107–115

    Article  CAS  PubMed  Google Scholar 

  • Dias KS, Januário JP, D’ Dego JL, Dias AL, dos Santos MH, Camps I, Coelho LF, Viegas C Jr (2012) Semisynthesis and antimicrobial activity of novel guttiferone-A derivatives. Bioorg Med Chem 20(8):2713–2720

    Article  CAS  PubMed  Google Scholar 

  • Guenette SA, Beaudry F, Marier JF, Vachon P (2006) Pharmacokinetics and anesthetic activity of eugenol in male Sprague–Dawley rats. J Vet Pharmacol Therap 29:265–270

    Article  CAS  Google Scholar 

  • Hidalgo ME, De la Rosa C, Carrasco H, Cardona W, Gallardo C, Espinoza L (2009) Antioxidant capacity of eugenol derivatives. Quim Nova 32(6):1467–1470

    Article  CAS  Google Scholar 

  • Jacobson M, Malmberg J, Ellervik U (2006) Aromatic O-glycosylation. Carbohydr Res 341:1266–1281

    Article  Google Scholar 

  • Jung M, Park M (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12:2130–2139

    Article  CAS  PubMed  Google Scholar 

  • Kabuto H, Tada M, Kohno M (2007) Eugenol [2-methoxy-4-(2-propenyl)phenol] prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol Pharm Bul 30:423–427

    Article  CAS  Google Scholar 

  • Lahloua S, Figueiredo AF, Magalhães PJC, Leal-Cardoso JH, Gloria PD (2004) Cardiovascular effects of methyleugenol, a natural constituent of many plant essential oils, in normotensive rats. Life Sci 74:2401–2412

    Article  Google Scholar 

  • Li L, Redding S, Dongari-Bagtzoglou A (2007) Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res 86:204–215

    Article  CAS  PubMed  Google Scholar 

  • Machado M, Dinis AM, Salgueiro L, Custódio JBA, Cavaleiro C, Sousa MC (2011) Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Exp Parasitol 127:732–739

    Article  CAS  PubMed  Google Scholar 

  • Manikandan P, Senthil RM, Priyadarsini RV, Vinothini G, Nagini S (2010) Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci 86:936–941

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SA, Pratt MR, Hruby VJ, Polt R (2001) Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J Org Chem 66:2327–2342

    Article  CAS  PubMed  Google Scholar 

  • Moellering RC Jr (2011) Discovering new antimicrobial agents. Int J Antimicrob Agents 37:2–9

    Article  CAS  PubMed  Google Scholar 

  • Mulkens A, Kapetanidis I (1988) Eugenylglucoside, a new natural phenylpropanoid heteroside from Melissa officinalls. J Nat Prod 51(3):496–498

    Article  CAS  PubMed  Google Scholar 

  • Oyedemi SO, Okoh AI, Mabinya LV, Pirochenva G, Afolayan AJ (2009) The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr J Biotechnol 8(7):1280–1286

    CAS  Google Scholar 

  • Pasqualotto AC, Denning WD (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(1):i19–i30

    Article  CAS  PubMed  Google Scholar 

  • Pramod K, Ansari SH, Ali J (2010) Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun 5(12):1999–2006

    CAS  PubMed  Google Scholar 

  • Prashar A, Locke IC, Evans CS (2006) Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Prolif 39:241–248

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Kim JM (2003) Cu(II)-self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tn-antigen cancer marker: synthesis and lectin binding properties. Tetrahedron 59:3881–3893

    Article  CAS  Google Scholar 

  • Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Diaz JM, Maza PK, Dias Filho BP, Cortez DAG, Alviano DS, Rosa MSS, Lopes AHCS, Alviano CS, Nakamura CV (2006) Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 55:10–99

    Article  Google Scholar 

  • Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 1–26

  • Zhang P, Zhang E, Xiao M, Chen C, Xu W (2012) Enhanced chemical and biological activities of a newly biosynthesized eugenol glycoconjugate, eugenol α-d-glucopyranoside. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4351-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Teixeira Carvalho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, T.B., Orlandi, M., Coelho, L.F.L. et al. Synthesis and in vitro evaluation of antifungal and cytotoxic activities of eugenol glycosides. Med Chem Res 23, 496–502 (2014). https://doi.org/10.1007/s00044-013-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0669-2

Keywords

Navigation